
Contents

Contents

1 Additional Functions Dealing with Bitsets 2

2 Additional Functions for Surmise Relations between Items 9

3 Additional Functions for Spaces . 13
3.5 ganter — Class for computing the closure under union and

intersection for structures . 15

4 Working with Information Structures . 19

5 Working with Item Hypotheses . 22

6 Working with Answer Patters . 25

7 Additional Functions for Working with Patterns 29

8 Equivalence Properties of Items . 37

9 Data Structures for Working with Tests 40
9.1 partition — Partition of a set of items into tests 40
9.2 disjpartition — Partition of items into disjoint tests 44
9.3 srbt — Surmise relations between tests . 47

10 Investigating Equal Structures . 51

11 Working with (Disjoint) Partitions . 53

12 Surmise Relations Within and Across Tests 58

13 Creating Different Kinds of Partitions . 60

14 Surmise Relations between Tests . 65

15 Properties of Partitions . 69

16 Functions for Equivalence Properties of Tests 72

17 Functions for working with vectors of integer numbers 76

18 Functions for working with Isotonic Probabilistic Models . 86

Class Graph . 92

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 1

1 Additional Functions Dealing with Bitsets

1

Additional Functions Dealing with Bitsets (a,b)

Names

1.1 double minv (double* vector, int len)
minimal entry of a vector 3

1.2 int minv (int* vector, int len)
minimal entry of a vector 3

1.3 double maxv (double* vector, int len)
maximal entry of a vector 4

1.4 int maxv (int* vector, int len)
maximal entry of a vector 4

1.5 int min pos (float* vector, int len)
position of the minimal element in
a vector . 4

1.6 int min pos (int* vector, int len)
position of the minimal element in
a vector . 5

1.7 int max pos (float* vector, int len)
position of the maximal element in
a vector . 5

1.8 int max pos (int* vector, int len)
position of the maximal element in
a vector . 6

1.9 int is number el (double item, double* set,
int set size)

is a number element of a set of
numbers . 6

1.10 int is number el (int item, int* set, int set size)
is a number element of a set of
numbers . 6

1.11 int is bitset el (bitset element, bitset* set, int q size,
int s size)

is a bitset element of a set of bit-
sets? . 7

1.12 int is bitset el (bitset element, structure* st)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 2

1 Additional Functions Dealing with Bitsets

is a bitset element of an arbitrary
structure? . 7

1.13 int* set (int* array, int len, int value=0)
set all elements of an array the
same value . 8

1.1

double minv (double* vector, int len)

minimal entry of a vector

minimal entry of a vector. Compute the
minimal entry of a vector of real numbers.
Return Value: minimal entry of a vector of real numbers
Parameters: vector — vector of (real) numbers

len — lenght of vector

1.2

int minv (int* vector, int len)

minimal entry of a vector

minimal entry of a vector. Compute the min-
imal entry of a vector of integer numbers.
Return Value: minimal entry of a vector of integer numbers
Parameters: vector — vector of (real) numbers

len — lenght of vector

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 3

1 Additional Functions Dealing with Bitsets

1.3

double maxv (double* vector, int len)

maximal entry of a vector

maximal entry of a vector. Compute the
maximal entry of a vector of real numbers.
Return Value: maximal entry of a vector of numbers
Parameters: vector — vector of (real) numbers

len — lenght of vector

1.4

int maxv (int* vector, int len)

maximal entry of a vector

maximal entry of a vector. Compute the max-
imal entry of a vector of integer numbers.
Return Value: maximal entry of a vector of numbers
Parameters: vector — vector of (real) numbers

len — lenght of vector

1.5

int min pos (float* vector, int len)

position of the minimal element in a vector

position of the minimal element in a vector. Compute the po-
sition of the minimal entry in a vector of real numbers. At-
tention: The first entry of the vector is on position ’0’ !
Return Value: position of the minimum in the vector

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 4

1 Additional Functions Dealing with Bitsets

Parameters: vector — vector of real numbers
len — lenght of vector

1.6

int min pos (int* vector, int len)

position of the minimal element in a vector

position of the minimal element in a vector. Compute the po-
sition of the minimal entry in a vector of integer numbers.
Attention: The first entry of the vector is on position ’0’ !
Return Value: position of the minimum in the vector
Parameters: vector — vector of integer numbers

len — lenght of vector

1.7

int max pos (float* vector, int len)

position of the maximal element in a vector

position of the maximal element in a vector. Compute the po-
sition of the maximal entry in a vector of real numbers. At-
tention: The first entry of the vector is on position ’0’ !
Return Value: position of the maximum in the vector
Parameters: vector — vector of real numbers

len — lenght of vector

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 5

1 Additional Functions Dealing with Bitsets

1.8

int max pos (int* vector, int len)

position of the maximal element in a vector

position of the maximal element in a vector. Compute the po-
sition of the maximal entry in a vector of integer numbers.
Attention: The first entry of the vector is on position ’0’ !
Return Value: position of the maximum in the vector
Parameters: vector — vector of integer numbers

len — lenght of vector

1.9

int is number el (double item, double* set, int set size)

is a number element of a set of numbers

is a number element of a set of numbers. Look, if a
single real number is element of a set of real numbers.
Return Value: yes (1) or no (0)
Parameters: item — number to look for

set — pointer to set of real numbers
set size — size of set of numbers

1.10

int is number el (int item, int* set, int set size)

is a number element of a set of numbers

is a number element of a set of numbers. Look, if a sin-
gle integer number is element of a set of integer numbers.
Return Value: yes (1) or no (0)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 6

1 Additional Functions Dealing with Bitsets

Parameters: item — number to look for
set — pointer to set of integer numbers
set size — size of set of numbers

1.11

int is bitset el (bitset element, bitset* set, int q size, int

s size)

is a bitset element of a set of bitsets?

is a bitset element of a set of bitsets?. Look, if a bit-
set (meaning also a vector of integer numbers of lenght q size)
is element of a set of bitsets (or a set of integer numbers).
Return Value: yes (1) or no (0)
Parameters: element — bitset to look for

set — pointer to set of bitsets
q size — number of items in each bitset
s size — number of bitsets in the set

1.12

int is bitset el (bitset element, structure* st)

is a bitset element of an arbitrary structure?

is a bitset element of an arbitrary structure?. Look, if a
bitset is element of the given structure (or space, data...).
Return Value: yes (1) or no (0)
Parameters: element — bitset to look for

set — pointer to set of bitsets
q size — number of items in each bitset
s size — number of bitsets in the set

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 7

1 Additional Functions Dealing with Bitsets

1.13

int* set (int* array, int len, int value=0)

set all elements of an array the same value

set all elements of an array the same value. Set all elements
of the given array to the value of the given parameter. If no
’value’ parameter is given, all entries of the array are set 0.
Return Value: pointer to the array
Parameters: array — array of integers

len — length of array
value — value to be set, default is 0

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 8

2Additional Functions for Surmise Relations between Items

2

Additional Functions for Surmise Relations between
Items

Names

2.1 srbi* copy srbi (srbi* sr)
make a copy of a surmise relation
matrix . 9

2.2 srbi* change items (srbi* sr, int nr1, int nr2)
change items 10

2.3 srbi* remove item sr (srbi* sr, int item)
remove an item 10

2.4 int count equ items (srbi* sr)
count equivalent items 11

2.5 srbi* delete equ items (srbi* sr)
delete equivalent items 11

2.6 srbi* close reflex srbi (srbi* sr)
complete surmise relations because
of reflexivities 11

2.7 srbi* close trans srbi (srbi* sr)
complete transitivities in surmise
relation between items 12

2.8 int is item sr (int i, int j, srbi* sr)
is there a surmise relation between
two items? . 12

ATTENTION: In all following functions the numbering of items starts with ’0’ !
This means, the first item has the number ’0’, the last ’q size-1’.

2.1

srbi* copy srbi (srbi* sr)

make a copy of a surmise relation matrix

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 9

2Additional Functions for Surmise Relations between Items

Return Value: pointer to copied srbi-structure
Parameters: sr — surmise relation structure to be copied

2.2

srbi* change items (srbi* sr, int nr1, int nr2)

change items

change items. Change the position of two items in a srbi-
matrix. The information numbers of the items is also changed.
Return Value: Surmise relation matrix, where items number i and j

changed their position in the matrix.

Parameters: sr — matrix with surmise relation
nr1 — number of first item
nr2 — number of second item

2.3

srbi* remove item sr (srbi* sr, int item)

remove an item

remove an item. Remove one item in a surmise-relation matrix. For example:
you want to eliminate item nr. i - the function eliminates the i-th line and
the i-th column in the matrix. The informations for this item also is deleted.
Return Value: new srbi with deleted item.
Parameters: sr — surmise relation between items

item — number of the item to be deleted

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 10

2Additional Functions for Surmise Relations between Items

2.4

int count equ items (srbi* sr)

count equivalent items

count equivalent items. Count, how many items are equivalent in the
given surmise relation. Comment: two items a and b are equiva-
lent, if aSb and bSa (’S’ denotes the surmise relation between items).
Return Value: number of equivalent items
Parameters: sr — surmise relation between items

2.5

srbi* delete equ items (srbi* sr)

delete equivalent items

delete equivalent items. Delete one of two equivalent items.
Comment: two items a and b are equivalent, if aSb and bSa.
Return Value: new srbi with deleted equivalent items.
Parameters: sr — matrix with surmise relations

2.6

srbi* close reflex srbi (srbi* sr)

complete surmise relations because of reflexivities

complete surmise relations because of reflexivities. For each item ’a’ we
always have: a is in surmise relation with a. Therefore in the ma-
trix with surmise relations there have to be all ’1’s in the main di-
agonal. If they are missing, they are completed by this function.
Return Value: new srbi with added reflexivities.
Parameters: sr — matrix with surmise relations

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 11

2Additional Functions for Surmise Relations between Items

2.7

srbi* close trans srbi (srbi* sr)

complete transitivities in surmise relation between items

complete transitivities in surmise relation between items. Complete a
surmise relation matrix between items by regarding transitivity proper-
ties. Example: ’S’ denotes the surmise relation between Items, a,b,c are
Items; if aSb and bSc, the function will set aSc in the srbi-structure.
Return Value: complete srbi-structure with all surmise-relations
Parameters: sr — relation to be completed

2.8

int is item sr (int i, int j, srbi* sr)

is there a surmise relation between two items?

is there a surmise relation between two items?. Look if
item number i is in surmise relation with item number j.
Return Value: yes or no (1/0)
Parameters: i — number of first item

j — number of second item
sr — surmise relations between the items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 12

3 Additional Functions for Spaces

3

Additional Functions for Spaces

Names

3.1 int write space (space* s)
write a space to stdout 13

3.2 structure* states with x (space* s, int item x)
states with item x 14

3.3 data* transpose matrix (data* input)
transpose a matrix 14

3.4 int* count data (data* d)
count the frequencies of answer
patterns in a data matrix 14

3.5 class ganter Class for computing the closure
under union and intersection for
structures . 15

3.1

int write space (space* s)

write a space to stdout

write a space to stdout. Comment: this function can be used for other structs
with the same internal structure(data, structure..) just by making a typecasting.
Return Value: 1 if an error occured, 0 else.

3.2

structure* states with x (space* s, int item x)

states with item x

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 13

3 Additional Functions for Spaces

states with item x. Compute all states
of a knowledge space containing an item x.
Return Value: structure containting alle the states that contain

’item x’, NULL if an error occured.

Parameters: s — knowledge space
item x — number of item

3.3

data* transpose matrix (data* input)

transpose a matrix

transpose a matrix. Transpose a given matrix in a data-structure
by changing a[i, j] to a[j, i]. Comment: use this functions also
for spaces, structures and partitions just making a typecasting.
Return Value: pointer to a data-structure, containing the transposed

matrix.

Parameters: input — data-structure including the matrix to be
transposed

3.4

int* count data (data* d)

count the frequencies of answer patterns in a data matrix

count the frequencies of answer patterns in a data matrix. Count the
frequencies of different answer patterns in a given data matrix, where
the line-infos are complete (they already include, which answer pat-
terns occur how often and they include all different patterns only once.
Return Value: : vector with the frequencies of answer patterns
Parameters: d — data-structure with line-infos

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 14

3 Additional Functions for Spaces

3.5

class ganter

Class for computing the closure under union and intersection for structures

Public Members

3.5.1 space* u closure (basis* b)
close a basis under union 16

3.5.2 int u closure (basis* b, filetype mode,
const char filename[])

close a basis under union 16

3.5.3 space* u closure (structure* su)
close a structure under union . . 16

3.5.4 int u closure (structure* su, filetype mode,
const char filename[])

close a structure under union . . 17

3.5.5 structure* s closure (structure* su)
close a structure under intersec-
tion . 17

3.5.6 int s closure (structure* su, filetype mode,
const char filename[])

close a structure under intersec-
tion . 18

Class for computing the closure under union and intersection for structures.
The functions in this class use the Ganter algorithm to compute the closure
under union and intersection. A great advantage with this algorithm is, that
not the whole structure/space has to be kept in memory. The next state in
the resulting structure/space is computed out of the last. Especially with large
structures, it is recommendable to use the versions of closure, that store the
resulting space/structure directly to a file.

3.5.1

space* u closure (basis* b)

close a basis under union

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 15

3 Additional Functions for Spaces

close a basis under union. Compute the clo-
sure of a basis under union using Ganter’s algorithm.
Return Value: resulting space, NULL, if an error occured.
Parameters: b — basis to be closed

3.5.2

int u closure (basis* b, filetype mode, const char file-

name[])

close a basis under union

close a basis under union. Compute the closure under union of a basis us-
ing Ganter’s algorithm. The resulting space is directly written to a file.
Return Value: number of states in the space.
Parameters: b — basis to be closed.

mode — file format.
filename — filename for resulting space.

3.5.3

space* u closure (structure* su)

close a structure under union

close a structure under union. Compute the closure un-
der union of a given structure using Ganter’s algorithm.
Return Value: resulting space, NULL if an error occured.
Parameters: st — structure to be closed

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 16

3 Additional Functions for Spaces

3.5.4

int u closure (structure* su, filetype mode, const char file-

name[])

close a structure under union

close a structure under union. Compute the closure under union of a struc-
ture using Ganter’s algorithm. The resulting space is directly written to a file.
Return Value: number of states in the space.
Parameters: b — basis to be closed.

mode — file format.
filename — filename for resulting space.

3.5.5

structure* s closure (structure* su)

close a structure under intersection

close a structure under intersection. Compute the closure un-
der intersection of a given structure using Ganter’s algorithm.
Return Value: resulting structure closed under intersection, NULL if

an error occured.

Parameters: st — structure to be closed.

3.5.6

int s closure (structure* su, filetype mode, const char file-

name[])

close a structure under intersection

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 17

3 Additional Functions for Spaces

close a structure under intersection. Compute the clo-
sure under intersection of a structure using Ganter’s algo-
rithm. The resulting structure is directly written to a file.
Return Value: number of states in the structure.
Parameters: b — basis to be closed.

mode — file format.
filename — filename for resulting structure.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 18

4 Working with Information Structures

4

Working with Information Structures

Names
4.1 int add info (int** info, int position, int number)

add identification numbers 19

4.2 int change two infos (int** info, int pos1, int pos2,
int nr)

change the positions of two lines
of informations 20

4.3 int* remove info (int pos, int* line)
remove an information number . 20

4.4 int is number in info (int num, int* line)
is a number element of a set of in-
formation numbers? 21

4.5 int* copy info line (int* info)
make a copy of an info line 21

4.6 void set info line (int* set, int* orig)
make a copy of an info line 21

ATTENTION: In all following functions the numbering of items starts with ’0’ !
This means, the first item has the number ’0’, the last ’q size-1’. The same
applies for patterns or states.

4.1

int add info (int** info, int position, int number)

add identification numbers

add identification numbers. In a set of information vectors, an
additional information number is added at a certain position.
Return Value: 1 if an error occured, 0 else.
Parameters: info — pointer to matrix of information numbers

position — position of the information vector in the in-
formation structure, where the number should be added
number — number to be added

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 19

4 Working with Information Structures

4.2

int change two infos (int** info, int pos1, int pos2, int

nr)

change the positions of two lines of informations

change the positions of two lines of informations. The information
numbers from the position ’pos1’ are written to ’pos2’ and vice versa.
Return Value: -1 if an error occured, 0 else
Parameters: info — pointer to matrix of information numbers

pos1 — first position of info-numbers to be changed
pos2 — second position of info-numbers to be changed
nr — number of info-lines possible in the info-struct

4.3

int* remove info (int pos, int* line)

remove an information number

remove an information number. Remove a single information number out of a
vector containing informations for a special position in the information matrix.
Return Value: new information line
Parameters: pos — position of the info-number to be removed

line — line in the information matrix, which should be
removed

4.4

int is number in info (int num, int* line)

is a number element of a set of information numbers?

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 20

4 Working with Information Structures

Return Value: yes (1) or no (0)
Parameters: num — number to look for

line — pointer to vector of information numbers

4.5

int* copy info line (int* info)

make a copy of an info line

make a copy of an info line. Allocate the necessary memory and
make a copy of an already existing line of information numbers.
Return Value: pointer to copied info vector
Parameters: info — vector of information numbers to be copied

4.6

void set info line (int* set, int* orig)

make a copy of an info line

make a copy of an info line. Make a copy of an already ex-
isting info line, if the necessary memory already is available.
Parameters: set — pointer to copied info line

orig — info line to be copied

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 21

5 Working with Item Hypotheses

5

Working with Item Hypotheses

Names

5.1 ihypoth* load ihypoth (const char filename[])
load an item hypothesis from a file

. 22

5.2 int write ihypoth (FILE *f, ihypoth *ih)
write an item hypothesis 23

5.3 ihypoth* new ihypoth (int q size)
allocate memory for a new item
hypothesis . 23

5.4 ihypoth* copy ihypoth (ihypoth* ih)
make a copy of an item hypotheses
structure . 23

5.5 void free ihypoth (ihypoth **r)
return memory to the system . . . 24

5.6 srbi* ihypoth2srbi (ihypoth* h)
item-hypothesis to surmise rela-
tion . 24

5.1

ihypoth* load ihypoth (const char filename[])

load an item hypothesis from a file

load an item hypothesis from a file. This function loads an item hypothesis
from a file. It determines automatically which type of data is stored in the file.
Return Value: pointer to resulting item hypothesis.
Parameters: filename[] — Name of file to be loaded

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 22

5 Working with Item Hypotheses

5.2

int write ihypoth (FILE *f, ihypoth *ih)

write an item hypothesis

write an item hypothesis. This functions writes an item hy-
pothesis to a given file (or alternatively) to stdout or stderr.
Return Value: -1 if an error occured, 0 else
Parameters: f — File to be written to

ih — pointer to item hypothesis

5.3

ihypoth* new ihypoth (int q size)

allocate memory for a new item hypothesis

Return Value: pointer to the new item hypothesis struct
Parameters: q size — Number of items

5.4

ihypoth* copy ihypoth (ihypoth* ih)

make a copy of an item hypotheses structure

Return Value: pointer to the resulting item hypothesis structure
Parameters: ih — original item hypothesis

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 23

5 Working with Item Hypotheses

5.5

void free ihypoth (ihypoth **r)

return memory to the system

return memory to the system. Return memory used by an item hypothesis
struct to the system.

5.6

srbi* ihypoth2srbi (ihypoth* h)

item-hypothesis to surmise relation

item-hypothesis to surmise relation . Change an hypothesis on surmise relations
between some items to an surmise relation structure, all fields, which were not
known in the hypotheses (all fields with ’.’) are set ’0’, the relation is completed
beause of transitivity and reflexitivity properties.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 24

6 Working with Answer Patters

6

Working with Answer Patters

Names

6.1 int write patterns (patterns* pa)
write a set of answer-patterns to
stdout . 25

6.2 patterns* copy patterns (patterns* orig)
make a copy of a set of patterns 26

6.3 patterns* load patterns (const char filename[])
load a pattern set from a file . . . 26

6.4 int save patterns (patterns *pa, filetype mode,
const char filename[])

write a pattern set to a file 26

6.5 patterns* new patterns (int q size, int p size)
allocate memory for a pattern set

27
6.6 void free patterns (patterns **p)

Return memory used by a pattern
set to the system 27

6.7 data* patterns2data (patterns *p)
convert pattern set to data set . . 27

6.8 patterns* data2patterns (data* d)
convert data set to pattern setThis
function is mere a cast operator 28

6.1

int write patterns (patterns* pa)

write a set of answer-patterns to stdout

write a set of answer-patterns to stdout. Write a set of an-
swer patterns to stdout, using ’1’ for a correct solved item,
’0’ for a wrong solution and ’x’ for a not answered item.
Return Value: -1, if an error occured, 0 else.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 25

6 Working with Answer Patters

6.2

patterns* copy patterns (patterns* orig)

make a copy of a set of patterns

make a copy of a set of patterns. The necessary memory is allocated.
Return Value: pointer to copied patterns.
Parameters: orig — original patterns to be copied

6.3

patterns* load patterns (const char filename[])

load a pattern set from a file

load a pattern set from a file. This function loads a pattern set from a file.
Return Value: pointer to resulting pattern set.
Parameters: filename[] — name of the file to be loaded

6.4

int save patterns (patterns *pa, filetype mode, const char

filename[])

write a pattern set to a file

write a pattern set to a file. This function writes a set of
answer patterns to a file using the new patternfile format.
Return Value: error code.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 26

6 Working with Answer Patters

Parameters: pa — patterns to be stored
mode — format to be used
filename[] — name of file to be saved

6.5

patterns* new patterns (int q size, int p size)

allocate memory for a pattern set

allocate memory for a pattern set. Parameters: q size — number of items
p size — number of patterns

6.6

void free patterns (patterns **p)

Return memory used by a pattern set to the system

Parameters: p — patterns set

6.7

data* patterns2data (patterns *p)

convert pattern set to data set

convert pattern set to data set. This function takes a pattern set and con-
verts it to a data set assuming that all un-answered items are not mastered.
Return Value: pointer to resultin data set
Parameters: p — patterns structure

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 27

6 Working with Answer Patters

6.8

patterns* data2patterns (data* d)

convert data set to pattern setThis function is mere a cast operator

convert data set to pattern set This function is mere a cast op-
erator. In the resulting pattern set, all items are considered
to be answered, i.e. the un-answered matrix is set to zero.
Return Value: pointer to resulting patterns set
Parameters: d — data set

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 28

7 Additional Functions for Working with Patterns

7

Additional Functions for Working with Patterns

Names

7.1 patterns* remove item (patterns* pa, int itemnr)
remove a single item 30

7.2 patterns* remove items (patterns* pa, int* nrs, int number)
remove given items out of an
answer-pattern 31

7.3 patterns* remove pattern (patterns* orig, int number)
remove a pattern 31

7.4 patterns* remove patterns (patterns* orig, int number,
int* pat nrs)

remove a set of answer-patterns 31

7.5 double* percent items answered (patterns* p)
how many percent of students an-
swered each item? 32

7.6 double* percent items correct (patterns* p)
how many percent of students gave
a correct answer to each item? . 32

7.7 double* percent pattern answered (patterns* p)
how many items were answered in
each pattern? 33

7.8 int* number items answered (patterns* pa)
how many persons gave an answer
to an item? . 33

7.9 int persons all items answered (patterns* pa)
how many persons answered all
the items? . 33

7.10 patterns* delete percent ua patterns (patterns* pa,
int percent)

delete patterns in which less than a
given percentage of items was an-
swered . 34

7.11 patterns* delete percent ua items (patterns* pa,
int percent)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 29

7 Additional Functions for Working with Patterns

delete items that have been an-
swered less often than a given per-
centage . 34

7.12 patterns* remove pat with ua (patterns* pa)
remove all patterns, where one or
more items are not answered . . . 35

7.13 int is pattern el (bitset sol, bitset unans,
patterns* pat)

is a pattern element of a set of pat-
terns? . 35

7.14 int is pattern el (bitset sol, bitset unans,
bitset* orig sol, bitset* orig una,
int q, int num)

is a pattern element of a set of pat-
terns? . 35

7.15 int patt in space (bitset sol, bitset unans, space* sp)
Is it possible, that an answer pat-
tern is element of a given space?

36

ATTENTION: In all following functions the numbering of items starts with ’0’ !
This means, the first item has the number ’0’, the last ’q size-1’. The same
applies for patterns.

7.1

patterns* remove item (patterns* pa, int itemnr)

remove a single item

remove a single item. Remove a single item out of a patterns-structure.
Return Value: new patterns-structure with deleted item
Parameters: pa — pointer to patterns struct

itemnr — number of item to be deleted

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 30

7 Additional Functions for Working with Patterns

7.2

patterns* remove items (patterns* pa, int* nrs, int num-

ber)

remove given items out of an answer-pattern

remove given items out of an answer-pattern. Re-
move the given items out of an answer-pattern.
Return Value: patterns with removed item, ’NULL’, if an error occured
Parameters: pa — patterns, where the items should be removed

nrs — numbers of the items to be removed
number — how many items should be removed

7.3

patterns* remove pattern (patterns* orig, int number)

remove a pattern

remove a pattern. Remove a single pattern out of a patterns-structure.
Return Value: new patterns-structure with removed pattern
Parameters: pa — pointer to patterns-structe

number — number of pattern to be removed

7.4

patterns* remove patterns (patterns* orig, int number,

int* pat nrs)

remove a set of answer-patterns

remove a set of answer-patterns. Remove a set of answer-patterns

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 31

7 Additional Functions for Working with Patterns

out of a patterns-structure. Attention: Currently the numbers of
the patterns to be deleted have to be enterd in increasing order!.
Return Value: new patterns-structure with patterns removed.
Parameters: orig — patterns-structure.

number — number of patterns to be removed.

7.5

double* percent items answered (patterns* p)

how many percent of students answered each item?

how many percent of students answered each item?. Cal-
culate for each item how often it has been answered (in
percent) (no difference, if the answer was correct or not).
Return Value: pointer to vector which includes the percentages for each

item.

7.6

double* percent items correct (patterns* p)

how many percent of students gave a correct answer to each item?

how many percent of students gave a correct answer to each item?. Cal-
culate for each item, how many percent of the given answeres are correct.
Return Value: pointer to vector which includes the percentages for each

item.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 32

7 Additional Functions for Working with Patterns

7.7

double* percent pattern answered (patterns* p)

how many items were answered in each pattern?

how many items were answered in each pattern?. Calculate
for each pattern how many percent of the items have been
answered (no difference, if the answer was correct or not).
Return Value: pointer to vector which includes the percent-numbers

for each pattern.

7.8

int* number items answered (patterns* pa)

how many persons gave an answer to an item?

how many persons gave an answer to an item?. Calcu-
late for each item how many subject answered the item
(making no difference, if the answer was correct or not).
Return Value: pointer to vector with number of subjects, that an-

swered item i on the i-th position.

7.9

int persons all items answered (patterns* pa)

how many persons answered all the items?

how many persons answered all the items?. Calculate,
how many persons answered all the given items (mak-
ing no difference, if the answer was correct or not).
Return Value: number of persons, that answered all items.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 33

7 Additional Functions for Working with Patterns

7.10

patterns* delete percent ua patterns (patterns* pa, int
percent)

delete patterns in which less than a given percentage of items was answered

delete patterns in which less than a given percentage of items was answered. All
these patterns in a patterns struct are deleted, where less than the given per-
centage of the items was answered (no matter, if the answer was correct or not).
Return Value: patterns-structure with deleted patterns.
Parameters: pa — pointer to patterns struct

percent — percentage of items that must be answered,
if the patterns should not be deleted

7.11

patterns* delete percent ua items (patterns* pa, int

percent)

delete items that have been answered less often than a given percentage

Return Value: patterns-structure with deleted items.
Parameters: pa — pointer to patterns struct

percent — percentage of students that must have an-
swered the item, if the item should not be deleted

7.12

patterns* remove pat with ua (patterns* pa)

remove all patterns, where one or more items are not answered

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 34

7 Additional Functions for Working with Patterns

Return Value: pointer to patterns-structure without the patterns,
where no answer to one or more items was given

7.13

int is pattern el (bitset sol, bitset unans, patterns* pat)

is a pattern element of a set of patterns?

Return Value: smallest number of the pattern in the patterns struct,
which is equal to the given pattern or 0, if the given
pattern is no element of the structure

Parameters: sol — bitset including the correct solved items the pat-
tern
unans — bitset including the unanswered items in the
pattern
pat — pointer to patterns struct

7.14

int is pattern el (bitset sol, bitset unans, bitset* orig sol,

bitset* orig una, int q, int num)

is a pattern element of a set of patterns?

is a pattern element of a set of patterns?. Look, if a single pattern
is element of a set of patterns, which is given in form of two bitsets
(one for the correctly solved items, one for the unanswered items) here.
Return Value: smallest number of the pattern in the patterns struct,

which is equal to the given pattern or 0, if the given
pattern is no element of the structure

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 35

7 Additional Functions for Working with Patterns

Parameters: sol — bitset including the correct solved items the pat-
tern
unans — bitset including the unanswered items in the
pattern
orig sol — pointer to set of bitsets including correctly
solved items
orig ua — pointer to set of bitsets including unan-
swered items
q — number of items per bitset/pattern
num — number of patterns in the set of patterns

7.15

int patt in space (bitset sol, bitset unans, space* sp)

Is it possible, that an answer pattern is element of a given space?

Is it possible, that an answer pattern is element of a given space?.
Look, if a pattern does not contradict any of the states in a space.
Return Value: yes (1) or no (0)
Parameters: sol — bitset including the correct solved items the pat-

tern
unans — bitset including the unanswered items in the
pattern
sp — knowledge space

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 36

8 Equivalence Properties of Items

8

Equivalence Properties of Items

Names

8.1 int is equivalent items (int item1, int item2, srbi* sr)
are two items equivalent? 37

8.2 int is up parallel (int item1, int item2, srbi* sr)
are two item ’up-parallel’? 38

8.3 int is down parallel (int item1, int item2, srbi* sr)
are two items ’down-parallel’? . 38

8.4 int is parallel (int item1, int item2, srbi* sr)
are two item parallel? 38

ATTENTION: In all following functions the numbering of items starts with ’0’ !
This means, the first item has the number ’0’, the last ’q size-1’. ATTENTION:
We have to find new and better names for the different levels of parallelity and
equivalence.

8.1

int is equivalent items (int item1, int item2, srbi* sr)

are two items equivalent?

are two items equivalent?. Look, if two items a and b are equiv-
alent. Comment: two items a and b are called equivalent here,
if aSb and bSa (’S’ denotes the surmise relation between items).
Return Value: yes or no (1 or 0), -1 if an error occured
Parameters: item1 — first item

item2 — second item
sr — surmise relation between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 37

8 Equivalence Properties of Items

8.2

int is up parallel (int item1, int item2, srbi* sr)

are two item ’up-parallel’?

are two item ’up-parallel’?. Comment: two items a and
b are called ’up-parallel’ here, if for all items c, c!=a
and c!=b, in the knowledge-space we have: cSa => cSb
Return Value: yes or no (1 or 0), -1 if an error occured
Parameters: item1 — first item

item2 — second item
sr — surmise relation between items

8.3

int is down parallel (int item1, int item2, srbi* sr)

are two items ’down-parallel’?

are two items ’down-parallel’?. Comment: two items
are called ’down-parallel’ here, if for all items c, c!=a
and c!=b, in the knowledge-space we have: aSc => bSc
Return Value: yes or no (1 or 0), -1 if an error occured
Parameters: item1 — first item

item2 — second item
sr — surmise relation between items

8.4

int is parallel (int item1, int item2, srbi* sr)

are two item parallel?

are two item parallel?. comment: two items a and b

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 38

8 Equivalence Properties of Items

are called ’parallel’ here, iff they are up and down parallel
Return Value: yes or no (1 or 0), -1 if an error occured
Parameters: item1 — first item

item2 — second item
sr — surmise relation between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 39

9 Data Structures for Working with Tests

9

Data Structures for Working with Tests

Names
9.1 class partition Partition of a set of items into

tests . 40

9.2 class disjpartition : public partition
Partition of items into disjoint
tests . 44

9.3 class srbt Surmise relations between tests . 47

9.1

class partition

Partition of a set of items into tests

Inheritance

9.1

partition

>
9.2

disjpartition

Public Members
int q size number of items

int t size number of tests

bitset basis*
matrix binary matrix (which item belongs

to which test)

int** item info information numbers for each
item

int** test info information numbers for each test

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 40

9 Data Structures for Working with Tests

9.1.1 partition () standard constructor 42

9.1.2 partition (int q size, int t size)
’new’-constructor 42

9.1.3 partition (partition* orig)
’copy’-constructor 42

9.1.4 partition (const char filename[])
’load’-constructor 42

9.1.5 partition (char* buffer, int q size, int t size)
constructor for reading from a
buffer . 43

9.1.6 virtual ~partition () destructor . 43

9.1.7 int save (filetype mode, const char filename[])
save a partition to a file 43

9.1.8 void write () write a partition 44

Protected Members

int wordq number of words needed to store
q size bits

int storage storage needed for the binary ma-
trix

structtype stype type of structure (partition or dis-
joint partition) - for internal use

9.1.9 int get memory () allocate memory for the partition,
according to the given number of
items and test 44

Partition of a set of items into tests. The class partition includes the basic
structure for the partitioning of a set of items into tests. The binary matrix
includes a ’1’, if an items belongs to a certain test, ’0’ else.

9.1.1

partition ()

standard constructor

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 41

9 Data Structures for Working with Tests

standard constructor. This costructor is called from the inherited class.

9.1.2

partition (int q size, int t size)

’new’-constructor

’new’-constructor. This constructor allocates memory for a new parti-
tion. If not enough memory is available, the class destructor is called.
Parameters: q size — number of items

t size — number of tests

9.1.3

partition (partition* orig)

’copy’-constructor

’copy’-constructor. Make a copy of an existing partition
Parameters: orig — original partition

9.1.4

partition (const char filename[])

’load’-constructor

’load’-constructor. Load a partition from file. If the file can
not be opened or nor free memory is available, the class destruc-
tor is called. If the type of file is not ’partition’ or ’disjoint
partition’, no partition is loaded, the class destructor is called.
Parameters: filename[] — name of inputfile

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 42

9 Data Structures for Working with Tests

9.1.5

partition (char* buffer, int q size, int t size)

constructor for reading from a buffer

constructor for reading from a buffer. Read
a partition with defined size from a buffer
Parameters: buffer — bitset matrix including the partition

q size — number of items
t size — number of tests

9.1.6

virtual ~partition ()

destructor

destructor. Return used memory to the system, set and structype variable to
UNKNOWN and the variables q size and t size to ’-1’.

9.1.7

int save (filetype mode, const char filename[])

save a partition to a file

Return Value: ’1’ if an error occured, ’0’ else
Parameters: mode — mode of the file to be written (binary or ASCII,

partition or disjpartition)
filename — name of outputfile

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 43

9 Data Structures for Working with Tests

9.1.8

void write ()

write a partition

write a partition. Write a partition in form of a matrix to stdout

9.1.9

int get memory ()

allocate memory for the partition, according to the given number of items and
test

Return Value: ’1’ if an error occured, ’0’ else.

9.2

class disjpartition : public partition

Partition of items into disjoint tests

Inheritance

9.1

partition

∨
9.2

disjpartition

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 44

9 Data Structures for Working with Tests

Public Members
9.2.1 disjpartition (const char filename[])

’load-constructor’ 45

9.2.2 disjpartition (int q size, int t size)
’new-constructor’ 45

9.2.3 disjpartition (disjpartition* dp)
’copy-constructor’ 46

9.2.4 disjpartition (char* buffer, int q, int t)
costructor for reading from a
buffer . 46

9.2.5 int is disjointpartition ()
is a given partition disjoint? . . . 46

Partition of items into disjoint tests. The class disjpartition is derived from
partition: It has one additional property: Each item in the partition must
belong exactly to one test.

9.2.1

disjpartition (const char filename[])

’load-constructor’

’load-constructor’. Load a disjoint partition from a file. If ’type
of file’ is ’partition’, it is tested, if each item belongs exactly
to one test. If ’type of file’ is neither ’partition’ nor ’disjoint
partition’, no partition is loaded, the class destructor is called.
Parameters: filename[] — name of inputfile

9.2.2

disjpartition (int q size, int t size)

’new-constructor’

’new-constructor’. Allocate memory for a new disjoint partition of given size.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 45

9 Data Structures for Working with Tests

Parameters: q size — number of items
t size — number of tests

9.2.3

disjpartition (disjpartition* dp)

’copy-constructor’

’copy-constructor’. Make a copy of a disjoint
partition. The necessary memory is allocated.
Parameters: dp — original disjoint partition

9.2.4

disjpartition (char* buffer, int q, int t)

costructor for reading from a buffer

costructor for reading from a buffer. Read a ma-
trix meaning a disjoint partition from a buffer.
Parameters: buffer — vector including the disjoint partition

q — number of items
t — number of tests

9.2.5

int is disjointpartition ()

is a given partition disjoint?

Return Value: ’1’, if the partition is disjoint, ’0’ else

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 46

9 Data Structures for Working with Tests

9.3

class srbt

Surmise relations between tests

Public Members

char** smatrix surmise relation between tests

char** slmatrix left-covering surmise relation

char** srmatrix right-covering surmise relation

int** test info information numbers for each test

srbt () standard constructor

9.3.1 srbt (int t size) ’new’-constructorAllocate memory
for a new srbt class with given
number of tests 48

9.3.2 srbt (const char filename[])
load-constructorLoad a srbt-
structure from a file 48

9.3.3 srbt (srbt* sr) ’copy’-constructorMake a copy of
an existing surmise relation 49

9.3.4 srbt (partition* p, srbi* si)
constructor for calculating the sur-
mise relations between tests out
of surmise relation between items
and the partition of items into
tests . 49

9.3.5 ~srbt () destructor . 49

9.3.6 int save (const char filename[])
save a srbt-structure to a file . . . 50

9.3.7 void write (FILE* f) write all three kinds of surmise re-
lations . 50

Private Members

int stype type of structure

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 47

9 Data Structures for Working with Tests

int getmemory () allocate memory for a srbt-struct
with given t size;

Surmise relations between tests. In this class three different forms of surmise
relations between tests can be stored: ’normal’ surmise relation between tests,
right-covering surmise relation, left-covering surmise relation. All these relations
are coded in form of a matrix, which has as many lines and columns as the
number of tests. Writing a ’1’ in the i-th column and the j-th line means, that
tests i is in surmise relation to tests j, writing a ’0’ on this position means,
that these tests are not in surmise relation. The order of storage in the file is:
surmise relation, right-covering surmise relation, left-covering surmise relation.
A comment line with an appropriate headline is stored for each matrix.

9.3.1

srbt (int t size)

’new’-constructorAllocate memory for a new srbt class with given number of
tests

’new’-constructor Allocate memory for a new srbt class with given number of
tests. Parameters: t size — number of tests.

9.3.2

srbt (const char filename[])

load-constructorLoad a srbt-structure from a file

load-constructor Load a srbt-structure from a file. If an error occures (file
cannot be opened, or type of file is not srbt, the class destructor is called).

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 48

9 Data Structures for Working with Tests

9.3.3

srbt (srbt* sr)

’copy’-constructorMake a copy of an existing surmise relation

’copy’-constructor Make a copy of an existing sur-
mise relation. The necessary memory is allocated.
Parameters: sr — surmise relations between tests to be copied

9.3.4

srbt (partition* p, srbi* si)

constructor for calculating the surmise relations between tests out of surmise
relation between items and the partition of items into tests

Parameters: p — partition of items into tests
si — surmise relation between items

9.3.5

~srbt ()

destructor

destructor. The destructor for the srbt-class returns used memory to the system,
sets the structtype variable to UNKNOWN and the number of tests to ’-1’.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 49

9 Data Structures for Working with Tests

9.3.6

int save (const char filename[])

save a srbt-structure to a file

save a srbt-structure to a file. All three matrices for sur-
mise relation between tests, right-and leftcovering surmise rela-
tion are written to a file together with appropriate headlines
for each relation matrix and the according header for srbt-files.
Parameters: filename[] — name of outputfile

9.3.7

void write (FILE* f)

write all three kinds of surmise relations

write all three kinds of surmise relations. All three matrices (surmise
relation, right-and leftcovering surmise relations) are written to a file.
Parameters: f — name of file (also possible: stdout/stderr

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 50

10 Investigating Equal Structures

10

Investigating Equal Structures

Names

int is equal struct (structure* s1 , structure* s2)
look, if two structures are equal

int is equal struct (partition* p1 , partition* p2)
look, if two partitions are equal

int is equal struct (disjpartition* p1 ,
disjpartition* p2)

look, if two disjoint partitions are
equal.

int is equal struct (space* s1, space* s2)
look, if two spaces are equal.

int is equal struct (data* d1, data* d2)
look, if two data structs are equal.

10.1 int is equal test (partition* p, int test1, int test2)
look, if two tests in a partition are
equal . 51

The fuctions ”is equal struct” work for structures, partitions, disjoint
partitions, data an spaces. In all these functions two structs are
called equal, iff they have the same number of tests/patterns/states,
the same number of items and if each line (=test/pattern/state) in
”struct1” is element of ”struct2” and vice versa. This function does
not consider any form of equivalence or parallelity between items.
Return Value: 1 if the structs are equal, 0 else.

10.1

int is equal test (partition* p, int test1, int test2)

look, if two tests in a partition are equal

look, if two tests in a partition are equal. This function looks,

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 51

10 Investigating Equal Structures

if two tests in a given partition contain the same items. It does
not consider any form of equivalence or parallelity between items.
Return Value: yes or no (1 or 0), -1 if an error occured.
Parameters: p — partition into tests

test1 — number of first test
test2 — number of second test

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 52

11 Working with (Disjoint) Partitions

11

Working with (Disjoint) Partitions

Names

11.1 bitset get test (partition* p, int position)
get a single test from a partition 54

11.2 bitset get test (partition* p, int position)
get a single test from a disjoint
partition . 54

11.3 int set test (partition* p, int position, bitset value)
set a test in a partition 54

11.4 int set test (disjpartition* p, int position, bitset value)
set a test in a disjoint partition 55

11.5 partition* remove tests (partition* p, int start, int end=-1)
remove tests within a partition . 55

11.6 disjpartition*
remove tests (disjpartition* p, int start,

int end=-1)
remove tests from a disjoint parti-
tion . 56

11.7 partition* testunion (partition* p, int test1, int test2)
union of two tests in a partition 56

11.8 int is disj partition (partition* p)
is a partition disjoint? 56

11.9 int count item test (partition* p, int testnr)
count, how many items are in the
given test . 57

11.10 srbi* order items (partition* p, srbi* sr)
order items . 57

11.1

bitset get test (partition* p, int position)

get a single test from a partition

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 53

11 Working with (Disjoint) Partitions

Return Value: bitset with requested test
Parameters: p — partition into tests

position — index of the test to be copied

11.2

bitset get test (partition* p, int position)

get a single test from a disjoint partition

Return Value: bitset with requested test
Parameters: p — disjoint partition into tests

position — index of the test to be copied

11.3

int set test (partition* p, int position, bitset value)

set a test in a partition

Return Value: -1, if an error occured, 0 else
Parameters: p — partition into tests

position — index of the test to be set
value — new value of the test

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 54

11 Working with (Disjoint) Partitions

11.4

int set test (disjpartition* p, int position, bitset value)

set a test in a disjoint partition

Return Value: -1, if an error occured, 0 else
Parameters: p — partition into tests

position — index of the test to be set
value — new value of the test

11.5

partition* remove tests (partition* p, int start, int end=-

1)

remove tests within a partition

remove tests within a partition. Remove a set of tests from a par-
tition, starting with the test on the ’start’ position, ending with the
test on the ’end’ postition, replace the tests on these positions with the
last tests in the partition. Comment: the ’end’ parameter is a de-
fault parameter - it can be left out, if only one test should be removed.
Return Value: partition with removed test
Parameters: p — partition into tests

start — position of the first test to be removed
end — position of the last test to be removed, can be
left out

11.6

disjpartition* remove tests (disjpartition* p, int start, int

end=-1)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 55

11 Working with (Disjoint) Partitions

remove tests from a disjoint partition

remove tests from a disjoint partition. Remove a set of tests from a parti-
tion or disjoint paritition, starting with the test on the ’start’ position, end-
ing with the test on the ’end’ postition, replace the tests on these positions
with the last tests in the partition. Comment: the ’end’ parameter is a
default parameter - it can be left out, if only one test should be removed.
Return Value: disjoint partition with removed test
Parameters: p — disjoint partition into tests

start — position of the first test to be removed
end — position of the last test to be removed, can be
left out

11.7

partition* testunion (partition* p, int test1, int test2)

union of two tests in a partition

union of two tests in a partition. Calculate the union of two
given tests in a partition and return a new patition which in-
cludes the union of the two given tests instead of the two tests.
Return Value: new partition with one test less
Parameters: p — partition into tests

test1 — number of first test
test2 — number of second test

11.8

int is disj partition (partition* p)

is a partition disjoint?

is a partition disjoint?. Look, if each item
in the partition belongs to exactly one test.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 56

11 Working with (Disjoint) Partitions

Return Value: 1 if the partition is disjoint, 0 else
Parameters: p — pointer to the partition

11.9

int count item test (partition* p, int testnr)

count, how many items are in the given test

Return Value: number of items in the requested test
Parameters: p — pointer to the partition

testnr — number of test in the partition

11.10

srbi* order items (partition* p, srbi* sr)

order items

order items. Order the in a given matrix of surmise relations in a way, that the
first n items belong to the first test in the partition, the next m items belong to
the second test and so on. The identity numbers for each item are also changed.
Return Value: ordered surmise relation between items
Parameters: p — partition

sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 57

12 Surmise Relations Within and Across Tests

12

Surmise Relations Within and Across Tests

Names

12.1 srbi* write SRwT matrix (partition* p, srbi* sr)
write all surmise relations within
tests in form of a matrix 58

12.2 srbi* write SRwT rel (partition* p, srbi* sr)
write all surmise relations within
tests in form of item pairs 59

12.3 srbi* write SRxT matrix (partition* p, srbi* sr)
write all surmise relations across
tests in form of a matrix 59

12.4 srbi* write SRxT rel (partition* p, srbi* sr)
write all surmise relations across
tests in form of item pairs 59

12.1

srbi* write SRwT matrix (partition* p, srbi* sr)

write all surmise relations within tests in form of a matrix

write all surmise relations within tests in form of a matrix. Only the sur-
mise relations within tests, meaning the surmise relations between items of
the same test, are regarded. Surmise relations for items which are in two
different tests are all set to ’0’. The resulting matrix is written to stdout.
Return Value: surmise relations for items within tests
Parameters: p — partition into tests

sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 58

12 Surmise Relations Within and Across Tests

12.2

srbi* write SRwT rel (partition* p, srbi* sr)

write all surmise relations within tests in form of item pairs

write all surmise relations within tests in form of item
pairs. All surmise relations for items between tests are writ-
ten to stdout in form of item pairs, e.g. item1 S item2.
Return Value: surmise relations for items within tests
Parameters: p — partition

sr — matrix with surmise relations

12.3

srbi* write SRxT matrix (partition* p, srbi* sr)

write all surmise relations across tests in form of a matrix

write all surmise relations across tests in form of a ma-
trix. Only the surmise relations for items in different
tests are regarded, the resulting matrix is written to stdout
Return Value: surmise relations for items across tests
Parameters: p — partition

sr — surmise relations betweent tests

12.4

srbi* write SRxT rel (partition* p, srbi* sr)

write all surmise relations across tests in form of item pairs

write all surmise relations across tests in form of item pairs. Only
the surmise relations for items in different tests are regarded, the
resulting relations are written to stdout in form of item pairs
Return Value: surmise relations for items across tests
Parameters: p — partition

sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 59

13 Creating Different Kinds of Partitions

13

Creating Different Kinds of Partitions

Names

13.1 disjpartition*
random part (int q size, int max t size=0)

create a random disjoint partition
. 61

13.2 disjpartition*
random part t (int q size, int t size)

create a random partition with a
given number of tests 61

13.3 disjpartition*
equal part (int q size, int t size)

create a random disjoint partition
where each test has the same num-
ber of items . 62

13.4 disjpartition*
min item part (int q size, int min item no,

int t size)
create a random disjoint partition
into tests, where each test has at
least a given minimal number of
items . 62

13.5 disjpartition*
trans part (int max t size, srbi* sr)

create a transitiv disjoint partition
into tests . 63

13.6 disjpartition*
antisym part (int max t size, srbi* sr)

create an antisymmetric disjoint
partition into tests 63

13.7 disjpartition*
connex part (srbi* sr)

create a disjoint partition into
connex tests . 63

13.8 disjpartition*

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 60

13 Creating Different Kinds of Partitions

left cover part (int max t size, srbi* sr)
create a left-covering disjoint par-
tition . 64

13.9 disjpartition*
right cover part (int max t size, srbi* sr)

create a right-covering disjoint
partition . 64

13.10 partition* make partition (int q size, int t size)
create a partition 64

13.1

disjpartition* random part (int q size, int max t size=0)

create a random disjoint partition

create a random disjoint partition. Create a random disjoint partition, where the
number of tests is selected randomly, it will be between 1 and max t size . Com-
ment: the maximal number of tests is a default parameter, default is q size/2.
Return Value: resulting disjoint partition
Parameters: q size — number of items

max t size — maximal number of tests

13.2

disjpartition* random part t (int q size, int t size)

create a random partition with a given number of tests

Return Value: resulting disjoint partition
Parameters: q size — number of items

t size — number of tests

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 61

13 Creating Different Kinds of Partitions

13.3

disjpartition* equal part (int q size, int t size)

create a random disjoint partition where each test has the same number of
items

Return Value: resulting disjoint partition, NULL if q size modulo t size
not zero

Parameters: q size — number of items
t size — number of tests

13.4

disjpartition* min item part (int q size, int min item no,

int t size)

create a random disjoint partition into tests, where each test has at least a
given minimal number of items

Return Value: resulting disjoint partition
Parameters: q size — number of items

t size — number of tests
min item no — minimal number of items per test

13.5

disjpartition* trans part (int max t size, srbi* sr)

create a transitiv disjoint partition into tests

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 62

13 Creating Different Kinds of Partitions

create a transitiv disjoint partition into tests. WARNING: Not implemented!
The mathematical solutions are still missing! You have to enter a maximal
size of tests, because the trivial solution (one item per test) is always possible.
Return Value: resulting disjoint partition
Parameters: max t size — maximal number of tests to be created

sr — surmise relations between items

13.6

disjpartition* antisym part (int max t size, srbi* sr)

create an antisymmetric disjoint partition into tests

create an antisymmetric disjoint partition into tests. WARN-
ING: Not implemented! The mathematical solutions are still
missing! You have to enter a maximal size of tests, be-
cause the trivial solution (one item per test) is always possible.
Return Value: resulting disjoint partition
Parameters: max t size — maximal number of tests to be created

sr — surmise relations between items

13.7

disjpartition* connex part (srbi* sr)

create a disjoint partition into connex tests

create a disjoint partition into connex tests. A disjoint partition into con-
nex tests is generated, the number of tests will be as small as possible.
Return Value: resulting disjoint partition
Parameters: sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 63

13 Creating Different Kinds of Partitions

13.8

disjpartition* left cover part (int max t size, srbi* sr)

create a left-covering disjoint partition

create a left-covering disjoint partition. WARNING: Not implemented! The
mathematical solutions are still missing! You have to enter a maximal size
of tests, because the trivial solution (one item per test) is always possible.
Return Value: resulting disjoint partition
Parameters: max t size — maximal number of tests to be created

sr — surmise relations between items

13.9

disjpartition* right cover part (int max t size, srbi* sr)

create a right-covering disjoint partition

create a right-covering disjoint partition. WARNING: Not implemented! The
mathematical solutions are still missing! You have to enter a maximal size
of tests, because the trivial solution (one item per test) is always possible.
Return Value: resulting disjoint partition
Parameters: max t size — maximal number of tests to be created

sr — surmise relations between items

13.10

partition* make partition (int q size, int t size)

create a partition

create a partition. The user can enter which item belongs to each test
manually, he is asked for each test, which items he want to set to the test.
Return Value: created partition
Parameters: q size — number of items

t size — number of tests

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 64

14 Surmise Relations between Tests

14

Surmise Relations between Tests

Names

14.1 int is test sr (partition* p, int test1, int test2,
srbi* sr)

is there a surmise relation between
two tests? . 66

14.2 int is test leftsr (partition* p, int test1, int test2,
srbi* sr)

is there a left-covering surmise re-
lation between two tests? 66

14.3 int is test rightsr (partition* p, int test1, int test2,
srbi* sr)

is there a right-covering surmise
relation between two tests? 66

14.4 int is test totalsr (partition*p, int test1, int test2,
srbi* sr)

is there a total-covering surmise
relation? . 67

14.5 int is test transitive (partition* p, int test1,
int test2, int test3, srbi* sr)

is a group of three tests in a parti-
tion transitive? 67

14.6 int is test antisymm (partition* p, int test1,
int test2, srbi* sr)

are two tests antisymmetric? . . . 68

14.7 int is connex test (int testnr, partition* p, srbi* sr)
is a given test in a partition con-
nex? . 68

ATTENTION: In all following functions the numbering of tests starts with ’0’ !
This means, the first test in a partition has the number ’0’, the last ’t size-1’.

14.1

int is test sr (partition* p, int test1, int test2, srbi* sr)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 65

14 Surmise Relations between Tests

is there a surmise relation between two tests?

is there a surmise relation between two tests?.
Look, if test 1 is in surmise relation with test 2.
Return Value: yes or no (1/0)
Parameters: p — partition into tests

test1 — number of first test
test2 — number of second test
sr — surmise relations between items

14.2

int is test leftsr (partition* p, int test1, int test2, srbi* sr)

is there a left-covering surmise relation between two tests?

is there a left-covering surmise relation between two tests?.
Look, if test 1 is in left-covering surmise relation with test 2.
Return Value: yes or no (1/0)
Parameters: p — partition into tests

test1 — number of first test
test2 — number of second test
sr — surmise relations between items

14.3

int is test rightsr (partition* p, int test1, int test2, srbi*

sr)

is there a right-covering surmise relation between two tests?

is there a right-covering surmise relation between two tests?.
Look, if test 1 is in right-covering surmise-relation with test 2.
Return Value: yes or no (1/0)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 66

14 Surmise Relations between Tests

Parameters: p — partition into tests
test1 — number of first test
test2 — number of second test
sr — surmise relations between items

14.4

int is test totalsr (partition*p, int test1, int test2, srbi*

sr)

is there a total-covering surmise relation?

is there a total-covering surmise relation?. Look, if
the two tests are in total-covering surmise relation, that
means they are in left- and right-covering surmise relation.
Return Value: yes or no (1 or 0)
Parameters: p — partition into tests

test1 — number of first test
test2 — number of second test
sr — surmise relations between items

14.5

int is test transitive (partition* p, int test1, int test2, int

test3, srbi* sr)

is a group of three tests in a partition transitive?

is a group of three tests in a partition transitive?. This function looks, if a
group of three tests in a partition is transitive, it is important to give the
tests in the correct order: if test1 S test2 and test2 S test3 and test1 S test3,
the three tests are transitive (S denotes the surmise relation between tests).
Return Value: 2, if not test1 S test2 or test2 S test3, 1 if the three tests

are transitive, 0 if they are not, -1 if an error occured

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 67

14 Surmise Relations between Tests

Parameters: p — partition into tests
test1 — number of first test
test2 — number of second test
test3 — number of third test
sr — surmise relation between items

14.6

int is test antisymm (partition* p, int test1, int test2,

srbi* sr)

are two tests antisymmetric?

are two tests antisymmetric?. Look, if two tests in a par-
tition are antisymmetric (meaning: test1 S test2, but test2
not S test1, S meaning the surmise relation between tests).
Return Value: yes or no (1 or 0);
Parameters: p — partition into tests

test1 — number of first test
test2 — number of second test
sr — surmise relations between items

14.7

int is connex test (int testnr, partition* p, srbi* sr)

is a given test in a partition connex?

is a given test in a partition connex?. Look, if the given test
in a partition is connex, which means, that for each item exists
a prerequisite in this test or it is a prerequisite of another item.
Return Value: yes or no (1 or 0)
Parameters: testnr — number of test to be investigated

p — partition to be investigated
sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 68

15 Properties of Partitions

15

Properties of Partitions

Names
15.1 int is part connex (partition* p, srbi* sr)

is a given partition connex? 69

15.2 int is part leftsr (partition* p, srbi* sr)
are all test in a given partition in
a left-covering surmise relation? 70

15.3 int is part rightsr (partition* p, srbi* sr)
are all test in a given partition in
a right-covering surmise relation?

. 70

15.4 int is part totalsr (partition* p, srbi* sr)
are all test in a given partition in
a total-covering surmise relation?

. 70

15.5 int is transitive part (partition* p, srbi* sr)
is the partition into tests transi-
tive? . 71

15.6 int is antisymm part (partition* p, srbi* sr)
is a partition into tests antisym-
metric? . 71

15.1

int is part connex (partition* p, srbi* sr)

is a given partition connex?

is a given partition connex?. This functions investigates, if for
each test A in the partition exists another tests B so that either
A S B or B S A (’S’ denotes the surmise relation between tests.)
Return Value: yes or no (1 or 0)
Parameters: p — partition into tests to be investigated

sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 69

15 Properties of Partitions

15.2

int is part leftsr (partition* p, srbi* sr)

are all test in a given partition in a left-covering surmise relation?

Return Value: yes or no (1 or 0)
Parameters: p — partition into tests to be investigated

sr — surmise relations between items

15.3

int is part rightsr (partition* p, srbi* sr)

are all test in a given partition in a right-covering surmise relation?

Return Value: yes or no (1 or 0)
Parameters: p — partition into tests to be investigated

sr — surmise relations between items

15.4

int is part totalsr (partition* p, srbi* sr)

are all test in a given partition in a total-covering surmise relation?

Return Value: yes or no (1 or 0)
Parameters: p — partition into tests to be investigated

sr — surmise relations between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 70

15 Properties of Partitions

15.5

int is transitive part (partition* p, srbi* sr)

is the partition into tests transitive?

is the partition into tests transitive?. Look,
if transitivity holds for all tests in a partition.
Return Value: yes or no (1/0)
Parameters: p — partition into tests

sr — surmise relation between items

15.6

int is antisymm part (partition* p, srbi* sr)

is a partition into tests antisymmetric?

Return Value: yes or no (1 or 0);
Parameters: p — partition into tests

sr — surmise relation between items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 71

16 Functions for Equivalence Properties of Tests

16

Functions for Equivalence Properties of Tests

Names

16.1 int is weak parallel (partition* p, int testA,
int testB, srbi* sr)
are two tests ’weak parallel’? . . . 73

16.2 int is leftc parallel (partition* p, int testA, int testB,
srbi* sr)
are two tests ’left-covering paral-
lel’? . 73

16.3 int is rightc parallel (partition* p, int testA,
int testB, srbi* sr)

are two tests ’right-covering paral-
lel’? . 73

16.4 int is totalc parallel (partition* p, int testA,
int testB, srbi* sr)

are two tests ’total-covering paral-
lel’? . 74

16.5 int is equivalent test (partition* p, int testA,
int testB, srbi* sr=NULL)

are two tests in a partition equiv-
alent? . 74

16.6 int is equivalent test (partition* p , int testA ,
int testB , space* s)

are two tests in a partition equiv-
alent? . 75

ATTENTION: Better names for the different forms of parallelity must be found

16.1

int is weak parallel (partition* p, int testA, int testB,

srbi* sr)

are two tests ’weak parallel’?

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 72

16 Functions for Equivalence Properties of Tests

are two tests ’weak parallel’?. Look, if two tests A an
B in a partition are ’weak parallel’, meaning that ASB
and BSA (’S’ denoting the surmise relation between tests).
Return Value: yes (1) or no(0).
Parameters: p — partition into tests

testA — first test
testB — second test
sr — matrix with surmise relations between items

16.2

int is leftc parallel (partition* p, int testA, int testB,

srbi* sr)

are two tests ’left-covering parallel’?

are two tests ’left-covering parallel’?. Look, if two tests A
and B in a partition are ’left-covering parallel’, meaning ASlB
and BSlA (Sl denoting the left-covering surmise relation).
Return Value: yes (1) or no(0).
Parameters: p — partition into tests

testA — first test
testB — second test
sr — matrix with surmise relations between items

16.3

int is rightc parallel (partition* p, int testA, int testB,

srbi* sr)

are two tests ’right-covering parallel’?

are two tests ’right-covering parallel’?. Look, if two tests A
and B in a partition are ’right-covering parallel’, meaning that

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 73

16 Functions for Equivalence Properties of Tests

ASrB and BSrA (Sr denoting the right-covering surmise relation).
Return Value: yes (1) or no(0).
Parameters: p — partition into tests

testA — first test
testB — second test
sr — matrix with surmise relations between items

16.4

int is totalc parallel (partition* p, int testA, int testB,

srbi* sr)

are two tests ’total-covering parallel’?

are two tests ’total-covering parallel’?. Look, if two tests A
and B in a partition are ’total-covering parallel’, meaning that
AStB and BStA (St denoting the total-covering surmise relation).
Return Value: yes (1) or no(0).
Parameters: p — partition into tests

testA — first test
testB — second test
sr — matrix with surmise relations between items

16.5

int is equivalent test (partition* p, int testA, int testB,

srbi* sr=NULL)

are two tests in a partition equivalent?

are two tests in a partition equivalent?. Look, if two tests in a par-
tition contain the same items or - if the matrix with the surmise re-
lations between items is given - if two test contain equivalent items.
Return Value: yes or no (1 or 0), -1 if an error occured

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 74

16 Functions for Equivalence Properties of Tests

Parameters: p — partition into tests
testA — first test
testB — second test
sr — matrix with surmise relations between items, de-
fault parameter

16.6

int is equivalent test (partition* p , int testA , int testB

, space* s)

are two tests in a partition equivalent?

are two tests in a partition equivalent?. This funcition tests the equiv-
alency of two test by following definition: In a given knowledge space
exists for each item ’a’ in testA an item ’b’ in testB so, that the set of
states containing item a is equal to the set of all states containing item b.
Return Value: s yes or no (1 or 0), -1 if an error occured
Parameters: p — partition into tests

testA — first test
testB — second test
s — knowledge space

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 75

17 Functions for working with vectors of integer numbers

17

Functions for working with vectors of integer num-
bers

Names

17.1 data v* new data v (int len)
allocate memory for a new data
vector of integer numbers 78

17.2 void free data v (data v* d)
return memory used by a vector to
the system . 78

17.3 data v* copy data v (data v* orig)
make a copy of a vector 78

void write data v (data v* d)
write a data vector of integer num-
bers to stdout

17.4 int is zero (data v* d)are all entries in a data vector
equal zero? . 79

17.5 int equal (data v* d1, data v* d2)
are two data vectors equal? 79

17.6 data v* minus (data v* d1, data v* d2)
calculate the coordinatewise differ-
ence of two data vectors 79

17.7 data v* minus (bitset a, bitset b, int set size)
calculate the coordinatewise differ-
ence of two bitsets 80

17.8 data v* sgn minus (data v* v1, data v* d2)
calculate the signum of the coor-
dinatewise difference of two data
vectors . 80

17.9 data v* larger matrix (data v* v)
calculate a matrix out of a vector
by calculating the product of the
vector with himself and the oper-
ation ’minus’ 80

17.10 data v* product (data v*, data v*)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 76

17 Functions for working with vectors of integer numbers

calculate the coordinatewise prod-
uct of two data vectors 81

17.11 data v* product (bitset a, bitset b, int set size)
calculate the coordinatewise prod-
uct of two bitsets, which are in-
terpreted as ’01’-vectors here . . . 81

17.12 int plus number (data v* d)
count the number of positive en-
tries in a given data vector 82

17.13 int minus number (data v* d)
count the number of negative en-
tries in a given data vector 82

17.14 int vz search (data v* d)
look, if the entries of the data vec-
tor have different algebraic signs

82
17.15 int summ (data v* d) summ the entries of a vector . . . 83

17.16 data v* bitset2data v (bitset b, int set size)
transform a bitset to a data vector
including the same entries 83

17.17 int is negative entry (data v* s)
does the data vector include a neg-
ative entry? . 83

17.18 void split vector (data v* s1, data v* s2, data v* s,
disjpartition* p)

split a data vector in two vectors 84

17.19 data v** transpose data v (data v** d, int n)
transpose a matrix of polytomous
answer patterns 84

17.20 data v** count data v (data v** in data, int* count,
int* num)

count the number of different data
vectors in a structure of ’num’
data vectors . 85

17.1

data v* new data v (int len)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 77

17 Functions for working with vectors of integer numbers

allocate memory for a new data vector of integer numbers

Return Value: pointer to new vector
Parameters: len — lenght of new vector

17.2

void free data v (data v* d)

return memory used by a vector to the system

Parameters: d — pointer to the data vector of integer numbers

17.3

data v* copy data v (data v* orig)

make a copy of a vector

Return Value: pointer to copied vector
Parameters: orig — pointer to original vector

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 78

17 Functions for working with vectors of integer numbers

17.4

int is zero (data v* d)

are all entries in a data vector equal zero?

Return Value: yes (1) or no (0)
Parameters: d — pointer to data vector

17.5

int equal (data v* d1, data v* d2)

are two data vectors equal?

are two data vectors equal?. Two data vectors are equal iff
they have the same lenght and the same entries on all positions.
Return Value: yes(1) or no(0)
Parameters: d1 — pointer to first vector

d2 — pointer to second vector

17.6

data v* minus (data v* d1, data v* d2)

calculate the coordinatewise difference of two data vectors

calculate the coordinatewise difference of two data vectors. Entry nr.
i of the difference vector is calculated by subtracting entry nr. i of
the second vector from entry nr. i of the first vector (d1[i] -d2[i])
Return Value: pointer to difference vector
Parameters: d1 — first data vector

d2 — second data vector, which is subtracted from d1

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 79

17 Functions for working with vectors of integer numbers

17.7

data v* minus (bitset a, bitset b, int set size)

calculate the coordinatewise difference of two bitsets

calculate the coordinatewise difference of two bitsets. The co-
ordinatewise difference of two bitsets is calculated, the result is
written to a data vector (the elements of this vector can be -
1,0,1). The second bitset given is subtracted from the first.
Return Value: pointer to difference vector
Parameters: a — first bitset

b — second bitset, to be subtracted from a

17.8

data v* sgn minus (data v* v1, data v* d2)

calculate the signum of the coordinatewise difference of two data vectors

Return Value: pointer to the signum vector of the difference vector

17.9

data v* larger matrix (data v* v)

calculate a matrix out of a vector by calculating the product of the vector with
himself and the operation ’minus’

calculate a matrix out of a vector by calculating the product of the vec-
tor with himself and the operation ’minus’. This function calculates a
quadratic matrix out of a vector (line number of the matrix = length

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 80

17 Functions for working with vectors of integer numbers

of the vector). Call the given vector v, the lenght of v len, the re-
sulting matrix m, then for all i,j < len: m[j][i] = v[i]-v[j]. The re-
sulting matrix is returned in form of a data vector of length (len*len).
Return Value: pointer to resulting matrix, NULL if an error occured
Parameters: v — pointer to data vector

17.10

data v* product (data v*, data v*)

calculate the coordinatewise product of two data vectors

Return Value: pointer to the resulting product vector of the same
lenght as the input vectors, NULL if an error occured

17.11

data v* product (bitset a, bitset b, int set size)

calculate the coordinatewise product of two bitsets, which are interpreted as
’01’-vectors here

Return Value: pointer to the resulting product vector of the same
lenght as the bitsets, NULL if an error occured

Parameters: a — first bitset
b — second bitset
set size — lenght of the bitsets a and b

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 81

17 Functions for working with vectors of integer numbers

17.12

int plus number (data v* d)

count the number of positive entries in a given data vector

Return Value: number of positive entries in the data vector

17.13

int minus number (data v* d)

count the number of negative entries in a given data vector

Return Value: number of negative entries in the data vector

17.14

int vz search (data v* d)

look, if the entries of the data vector have different algebraic signs

Return Value: yes(1) or no(0), -1 if an error occured.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 82

17 Functions for working with vectors of integer numbers

17.15

int summ (data v* d)

summ the entries of a vector

Return Value: summed entries

17.16

data v* bitset2data v (bitset b, int set size)

transform a bitset to a data vector including the same entries

Return Value: pointer to data vector including the same entries
Parameters: b — bitset to be transformed

set size — lenght of bitset

17.17

int is negative entry (data v* s)

does the data vector include a negative entry?

Return Value: s -1, if the vector includes a negative entry, +1, if all
entries in the vector are positive (or all are zero), 0 if no
data vector was given.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 83

17 Functions for working with vectors of integer numbers

17.18

void split vector (data v* s1, data v* s2, data v* s, disj-

partition* p)

split a data vector in two vectors

Parameters: s — original data vector
p — has the form of a disjoint partition with 2 tests:
which item of the original vector will belong to the first,
which item will belong to the second vector?
s1 — first part of the original vector, corresponding to
the first ’test’ in p
s2 — second part of the original vector

17.19

data v** transpose data v (data v** d, int n)

transpose a matrix of polytomous answer patterns

transpose a matrix of polytomous answer patterns. A matrix of polyto-
mous answer patterns is given in form of n data vectors of the same length
l. The result of this function is a pointer to l data vectors of lenght
n, which correspond to the transposed matrix of the original structure.
Return Value: s pointer to l data vectors of length n which correspond

to the transformed matrix of d

Parameters: d — pointer to a structure of n data vectors of lenght l
n — number of data vectors

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 84

17 Functions for working with vectors of integer numbers

17.20

data v** count data v (data v** in data, int* count, int*

num)

count the number of different data vectors in a structure of ’num’ data vectors

Return Value: s pointer to a set of data vectors, where each vector
occurs only once.

Parameters: in data — pointer to num data vectors of the same
length
count — vector of integer numbers; will include, how
often each pattern occurs

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 85

18Functions for working with Isotonic Probabilistic Models

18

Functions for working with Isotonic Probabilistic
Models

Names

18.1 int similar discord (int* sim, int* dis, data* dat,
int* count)
count the number of similar and
discordantly ordered pairs of vec-
tors in a data structure 87

18.2 int similar discord (int* sim, int* dis, data v** dat,
int* count, int num)
count the number of similar and
discordantly ordered pairs of vec-
tors in a set of polytomous re-
sponse vectors 88

18.3 double pred (data* d, int* count = NULL)
calculate the Index of Predictabil-
ity of a data set fo dichotomous re-
sponse variables 88

18.4 double pred (data v** d, int num, int* count)
calculate the Index of Predictabil-
ity of a set of data vectors of poly-
tomous response variables 88

18.5 double prede (int q, int vpn, int* probabil)
calculate the Index of Predictabilty
of a set of all possible answer pat-
terns of a given number of items
and students 89

18.6 double predset (data* d, disjpartition* p,
int* count = NULL)

calculate the Set-Predictability of
a criterion and predictor sets of
items . 89

18.7 double predset (data v** d, int num, disjpartition* p,
int* count)

calculate the Set-Predictability of
a criterion and predictor sets of
items . 90

18.8 double* wo1it (data* d, int* count = NULL)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 86

18Functions for working with Isotonic Probabilistic Models

Direct test of Axiom (W1) of
ISOP for all items 90

18.9 double* wo2vekt (data* d, int* count = NULL)
Direct test of Axiom (W2) of
ISOP for all response vectors . . . 91

Currently, each of the functions is written twice, once for the usage with ’tra-
ditional’ data structures consisting of bitsets and including only dichtomous
answer possibilities, and once for a structure on data vectors including also
polytomous answer variables.

18.1

int similar discord (int* sim, int* dis, data* dat, int*

count)

count the number of similar and discordantly ordered pairs of vectors in a data
structure

Return Value: s -1, if an error occured, 0 else.
Parameters: sim — returns the number of similar pairs

dis — returns the number of discordantly pairs @oaram
dat pointer to data structure
count — vector of integer numbers including how often
each answer pattern occus in the data structure.

18.2

int similar discord (int* sim, int* dis, data v** dat, int*

count, int num)

count the number of similar and discordantly ordered pairs of vectors in a set
of polytomous response vectors

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 87

18Functions for working with Isotonic Probabilistic Models

Return Value: s -1, if an error occured, 0 else.
Parameters: sim — returns the number of similar pairs

dis — returns the number of discordantly pairs @oaram
dat pointer to a set of polytomous data vectors
num — number of data vectors
count — vector of integer numbers including how often
each answer pattern occus in the data structure.

18.3

double pred (data* d, int* count = NULL)

calculate the Index of Predictability of a data set fo dichotomous response
variables

calculate the Index of Predictability of a data set fo dichotomous re-
sponse variables. The numbers of similar and discordantly ordered pairs
of vectors are printed to stdout together with the Indices of Isotonicity,
Predictability and the standard deviation of the Index of Predictability.
Return Value: s Index of Predictabiliy
Parameters: d — data structure

count — integer vector, which includes how often each
answer pattern in the data set occurs. This parameter
is a default parameter, if no count-vector is given, it is
calculated in the function

18.4

double pred (data v** d, int num, int* count)

calculate the Index of Predictability of a set of data vectors of polytomous
response variables

calculate the Index of Predictability of a set of data vectors of polyto-
mous response variables. The numbers of similar and discordantly ordered

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 88

18Functions for working with Isotonic Probabilistic Models

pairs of vectors are printed to stdout together with the Indices of Isotonic-
ity, Predictability and the standard deviation of the Index of Predictability.
Return Value: s Index of Predictabiliy
Parameters: d — pointer to a set of data vectors

num — number of vectors in the data set
count — integer vector, which includes how often each
answer pattern in the data set occurs.

18.5

double prede (int q, int vpn, int* probabil)

calculate the Index of Predictabilty of a set of all possible answer patterns of a
given number of items and students

calculate the Index of Predictabilty of a set of all possible answer patterns
of a given number of items and students. The function calculates the ex-
pected frequency of answer patterns out of the given probabilities: Call the
number of items q, there are 2q possible answer patterns. In the probabil-
ity vector the user stores the probabilities for a wrong answer to each item.
The freuquencies of answer patterns are calculated out of this probabilities.
Return Value: s Index of Predictability of item pairs
Parameters: q — number of items

vpn — number of answer patterns
probabil — integer vector of probabilities for a wrong
answer to each item.

18.6

double predset (data* d, disjpartition* p, int* count =

NULL)

calculate the Set-Predictability of a criterion and predictor sets of items

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 89

18Functions for working with Isotonic Probabilistic Models

Return Value: s Index of Set-Predictabiliy
Parameters: d — data structure

p — Disjoint partition of items in a criterion and predic-
tor set (corresponds to a disjoint partition with 2 tests
count — integer vector, which includes how often each
answer pattern in the data set occurs. This parameter
is a default parameter, if no count-vector is given, it is
calculated in the function

18.7

double predset (data v** d, int num, disjpartition* p, int*

count)

calculate the Set-Predictability of a criterion and predictor sets of items

Return Value: s Index of Set-Predictabiliy
Parameters: d — pointer to a set of data vectors

num — number of data vectors
p — Disjoint partition of items in a criterion and predic-
tor set (corresponds to a disjoint partition with 2 tests
count — integer vector, which includes how often each
answer pattern in the data set occurs

18.8

double* wo1it (data* d, int* count = NULL)

Direct test of Axiom (W1) of ISOP for all items

Return Value: s vector with indices w1 for each item

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 90

18Functions for working with Isotonic Probabilistic Models

Parameters: d — data structure
count — integer vector, which includes how often each
answer pattern in the data set occurs. This parameter
is a default parameter, if no count-vector is given, it is
calculated in the function

18.9

double* wo2vekt (data* d, int* count = NULL)

Direct test of Axiom (W2) of ISOP for all response vectors

Return Value: s vector with indices w2 for each response vector
Parameters: d — data structure

count — integer vector, which includes how often each
answer pattern in the data set occurs. This parameter
is a default parameter, if no count-vector is given, it is
calculated in the function

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 91

Class Graph

Class Graph

3.5

ganter . 15

9.1

partition . 40

>
9.2

disjpartition . 44

9.3

srbt . 47

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling & Malte Zöckler
January 8, 2002 92

