Project Surmise Relations between Tests

Documentation of the | i bsr bi Library

Cord Hockemeyer*

August 30, 2000

Institut fur Psychologie
Karl-Franzens-Unversitat Graz, Austria

*E-Mail: Cord.Hockemeyer@kfunigraz.ac.at

This text was produced with IATEX 2. A PostScript version was produced with dvi ps
and a PDF version with PDFIATEX.

TeX is a trademark of the American Mathematical Society (Ap4S); PostScript and PDF
are trademarks of Adobe, Inc.; UNIX is a registered trademark licensed by the X/Open
Company, Ltd.; ANSI is a registered trademark of the American National Standards
Institute; SUN, Solaris, and Java are trademarks of SUN Microsystems Inc. All other
product names mentioned herein are trademarks of their respective owners.

Contents

Overview 1

General documentation 3

Introduction 5

Tools and methods used in the development and documentation of software 7
3.1 Documentation as part of the development process: Literate Program-

MING . . . 7

3.2 Programming languages, compilers, and development environment . . 8

3.2.1 Programming language 9

3.2.2 Compilers and development environments 9

3.2.3 Versioning 10

3.3 Portability 10

Interfaces, main data structures, and file formats 13

4.1 Interfaces 13

4.2 Main data structures 13

4.2.1 Bitsets 13

4.2.2 Knowledge structures 14

4.2.3 Surmiserelations 15

4.3 Fileformats 15

43.1 Oldfileformats 15

4.3.2 Changesinthefileformats 16

433 Additional information about filecontents 17

Special algorithms and methods 19

5.1 Samples from largespaces 19

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) i

Contents

52 Specialmethods

Il General utility functionalities

6 Verbosity flags

6.1 verbose,

6.2 debug
7 Utility functions

7.1 random.,

7.2 urandom.

11 Functions dealing with plain sets

8 Creating and deleting bitsets

8.1 new bitset
8.2 randomset
83 delete bitset
8.4 copy_bitset
9 Changing bitsets
91 set_excl
92 set_incl
9.3 set _bitset

10 1I/O functions for bitsets

101 ascii_read
102 ascii_wite.............
103 bin_read
104 bin wite
11 Set operating functions
111 complerment
112 set_union
113 section
114 set diff
115 symmdiff

29

33

.................... 33
.................... 33
.................... 34
.................... 34

41

.................... 41
.................... 41
.................... 42
.................... 42

Surmise Relations between Tests

Contents

12 Set operating procedures

121 comp_union
122 comp_Ssection,
123 comp_set _diff
124 comp_symmdiff
13 Accumulative set operating procedures
131 acc_union
13.2 acc_section.
133 acc_set _diff
134 acc_symmdiff
14 Set predicates
141 is_element
142 enptyset
143 equal
144 subset
145 subseteq
15 Cardinalities
151 cardinality
152 union_size e
153 section_size
154 set _diff_size,
155 symmdiff _size,

IV Functions dealing with knowledge spaces

16 Creating, copying, and deleting knowledge spaces

16.1 new_Space
162 newbasis
16.3 new_structure
164 new data
165 new patterns
166 new.srbi
16.7 free_space
168 free_basis

49

...... 49

...... 50
...... 51

53

....... 53
....... 53
....... 54
....... 54

61

....... 61
....... 61
....... 62
....... 62
....... 63

65

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

Contents

17

18

19

16.9

16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18

free_structure
free data
free_patterns
free_srbi
COPY_SPACE . o o v v o e e e e
copy_basis
copy_structure
copy_data
copy_patterns
randomdata e

Extracting and setting knowlede states

171
17.2
17.3
17.4
175
17.6

copy_state
get _state
set_state
copy_pattern
get _pattern.
set_pattern.

1/O functions for knowledge spaces on items

18.1
18.2
18.3
18.4
185
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14

load_basis
load_space
load_structure
load_data
load _patterns e
load_srbi
save_basis e
SAVE_SPACE . . v v i
save_structure e
save_data e
save_patterns
save_Srbi ...
Wite patterns e
Wite srbi ...

Conversion of various data structures

19.1
19.2

constr_basis
constr_structure

Surmise Relations between Tests

Contents

193 ganter_basis 98
194 ganter_structure 99
195 sqQUEEZE 100
196 dep_matrix e 101
19.7 clause_set 102
19.8 get_clause 102
199 clause cardinality 103
19.10 patterns2data 104
19.11 data2patterns 104
20 Deriving knowledge spaces with certain properties 107
20,1 wellgrade 107
21 Selecting sub spaces and simulating students 109
21.1 mask_basis e 109
212 mask_space 110
21.3 mask_data 110
214 equal _sanple 111
215 MK _NOISY . . . o e 112
22 File type and version (fi | et ype. h) 115
221 structtype_names 115
222 srbt_version 115
223 type_of _file 116
V Internal 10 functions for knowledge spaces 117
23 1/0 functions for knowledge spaces on items 121
231 @0pPeni _SPACEe 121
23.2 A0PENO_SPACE . . . v e e 121
233 ard_space e 122
234 AW _SPACE 122
235 bopeni_space 123
23.6 bopeno_space e 124
237 brd_space e 124
238 bwr_space 125
Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) \Y

Contents

24 1/0 functions for bases on items 127
241 openi_basis 127
242 openo_basis 127
243 rd_basis 128
244 read_basis_element 0 L 128
245 w_basis 129
246 wite_basis_element 130

25 Basic I/O functions 131
25.1 read_int ... 131
252 read_bb 132
253 a_read_state 132
254 b_read_state e 133

26 Not yet really in order within documentation 135
26.1 read_patterns_element 135
262 wite_patterns_elenent, 136
263 read_iteminfo 136

APPENDIX 139

A Data structures 141
Al BItSets 141
A.2 Knowledge structures and surmisesystems 141

A.2.1 Structuretype 141
A.22 Filetype e 142
A.23 Knowledgespace e 142
A.2.4 Knowledge structureanddataset 142
A25 Basis e 143
A.2.6 SurmiseRelation 143

B Additional man pages 145

B.1 srbifile 145
B.1.1 SynopsSis 145
B.1.2 Description 145
B.1.3 Usage. 146
B.1.4 Remarks 147

Vi

Surmise Relations between Tests

Contents

B.15 Warning
B.16 Seealso.
B.2 srbtfile
B.21 Synopsis
B.2.2 Description
B23 Usage. e
B24 Remarks,
B.25 Seealso.

C Old formats

C.l basisfile.
C.1.1 Description
C.1.2 Versioninformation
C1l3 Seealso.

C.2 spacefile
C.2.1 Description
C.22 Warning e
C.2.3 Versioninformation
C24 Seealso. 0

C.3 patternfile
C.3.1 Description
C32 Warning
C.3.3 Versioninformation
C34 Seealso. 0

D Interfaces — C header files

D.1 srbi-seth
D.2 srbi-spaceh
D.3 srbi-utilth
D.4 filetypeh
D.5 errorlisth
D.6 internal/srbi-space-io.h

Bibliography

List of Manpages

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

vii

Contents

viii Surmise Relations between Tests

1 Overview

This text documents the | i bsr bi library developed within the project Surmise Rela-
tions between Tests (SRBT; status of August 30, 2000) performed at the Department of
Psychology at the University of Graz, Austria. The project is financed by the Austrian
National Science Fund (FWF) under the project number P12726-SOZ. Additionally,
there exist documentations of the mathematical part of the project and of its psycho-
logical application. The | i bsr bi library is built upon the | i bkst Library developed
by Cord Hockemeyer at the Department of Psychology, University of Technology at
Braunschweig, Germany (1).

The complete software documentation has fifth parts. In the first part, we will docu-
ment design decisions and basic algorithms used in the software. Decisions on methods
and tools are documented in Chapter 3. In Chapter 4, you find definitions of interfaces,
especially of file formats. In Chapter 5, important algorithms used in the software are
described as far as they are not already contained in the mathematical documentation.
This first part of the documentation will be quite free in its format.

In the second to fourth part, user documentation of the library (i. e. for program-
mers) will be written separately, thus allowing to use a special format, the man pages,
which have a long tradition on UNIX systems. As a consequence, library documen-
tation will be available in a number of formats (man pages, PostScript, PDF, HTML).
The second part documents a small number of general utility functions and verbosity
state variables which are independent of knowledge space theory. The third part con-
tains functions which deal with plain sets while the fourth part contains such functions
dealing with families of sets (i. e. knowledge structures on items). Finally, the fifth part
also contains functions which deal with knowledge spaces. These functions, however,
are intended for internal use only and, therefore, should only be applied within the
libraries. Their documentation is provided only for the programmers of the SRBI and
SRBT libraries.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 1

1 Overview

2 Surmise Relations between Tests

Part |

General documentation

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

2 Introduction

One important aspect of making design decisions is the pre-knowledge that the work
of programming will be taken over by someone else at November 1, 1998. It should
be possible for the successor to adapt and change decisions according to their personal
experiences as easily as possible.

Another point underlying many decisions is the form of the software to be devel-
oped: To a large percentage, it consists of procedures handling, evaluating and/or pro-
cessing information about knowledge spaces and surmise relations. A main part will
have the form of a library of functions (see also Section 3.2). This fact which is a conse-
quence of the tasks specified for the software part of the project was very important in
many decisions documented below.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 5

2 Introduction

6 Surmise Relations between Tests

3 Tools and methods used in the
development and documentation of
software

This chapter describes the basic decisions on tools and methods used in the develop-
ment and documentation of the software. This comprises mainly two decisions: the
way of combining source code and documentation, and the selection of programming
language, compiler, and development environment.

3.1 Documentation as part of the development process:
Literate Programming

The consistent documentation of larger software packages under development is a ma-
jor critical problem. This topic grows in importance if maintenance and development
is to be performed by several people as it will be the case in the current project. Strong
support for solving this problem lies in the concept of literate programming developed
by Knuth (2; 3). Literate programming denotes the idea of having code and documen-
tation in one source file and, thus, making it easier to have both at the same level of
development. Knuth developed the language VEEB (6) for concurrent programming and
documenting in Pascal. A well-known program written in VEEB is the typesetting pro-
gram TeX (4; 5).

Later, the concept of VVEB was also transferred to other programming languages
(see, e.g. (7)). The approach of VEB requires the mastery of four languages: V\EB,
TeX (or IATEX), the programming language, and the natural documentation language
(van Ammers and Kramer). An important strength of this approach is the support of
structured programming: whether the programmer develops their code in top—-down,
bottom-up, or middle—out method — at each level of abstraction they can simply de-

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 7

3 Tools and methods used in the development and documentation of software

note chunks of the next lower level by symbolic names. The code ist angl ed? together
automatically.

A second approach is the documentation in the program source by comments which
are extracted automatically. While many systems working in this manner rely com-
pletely on the comments in the source, there are at least two systems which also (par-
tially) use the program source code itself. in c2man (c2man), e. g., parameters of func-
tions are extracted from the source and, therefore, need not to be specified in the com-
ments additionally. A second example is the j avadoc? tool which is part of SUN’s
JAVA Development Kit.

Both approaches have their advantages. In literal programming, there is stronger
support for structured programming and, thus, for the development process itself. On
the other side, it requires learning and using an additional programming language.
This is one of the reasons for a decision toward the second approach of just automat-
ically evaluating comments. Another reason is the assumption that algorithms and
their development will largely be documented with respect to the mathematical part
of the project. Finally, documentations following the second approach is aimed to-
wards the applying programmer of function libraries. For maintaining and extending
the libraries, all necessary information should be included in this (external) part of the
documentation explaining basic principles — many parts of the libraries will be quite
simple, anyway.

As a result of this decision process, the software documentation will be twofold:
this part contains decisions and concepts regarding data structures and algorithms. In
the two subsequent, semi-automatically produced parts, the application programs and
the programming interfaces between library functions and application programs will
be described, respectively.

3.2 Programming languages, compilers, and development
environment

This section covers a number of decisions about tools etc.:
e Programming language(s)

e Compiler(s) and development environment(s)

1The name of the program producing Pascal Source Code from the WEB source code is t angl e in the
original VIEB system; the program weave produces TeX source from the VWEB source.
2See htt p: //j ava. sun. con product s/ j dk/ 1. 0. 2/ t ool s/ sol ari s/ j avadoc. ht m .

8 Surmise Relations between Tests

3.2 Programming languages, compilers, and development environment

e \/ersioning

3.2.1 Programming language

As most promising choices, the languages C, C++, and Java were considered. Out of
this group, the author has chosen C as his central programming language for the follow-
ing reasons: First, C has the highest level of standardization and, therefore, promises
the best chances for portability. Opposed to that, both, C++ and Java are still in a pro-
cess of development end enhancement. As a consequence, there are many compilers
(and, in the case of Java, virtual machines) supporting different versions and function-
alities.

In the case of C++, even the semantics of the language itself is subject to differ within
different versions of the same compiler. In the case of Java, the main problem lies within
the lacking backward compatibilities of classes and methods. In both languages, these
problems may even occur within one major version of the compiler or development
environment. Besides that, Java disqualifies itself as the main programming language
within the project, since it is quite slow due to the concept of the virtual Java machine.

To obtain as much portability as possible two rules should be considered during the
programming: (i) the usage of the language and of libraries should be restricted to pure
ANSI C neglecting all proprietary extensions provided by compiler and development
environment, and (ii) interfaces (C header files) should enable using the libraries also
from C++ programs.

As far as script languages are appropriate, the author currently would consider shell
scripts (preferably in Bourne shell syntax, otherwise in bash or ksh syntax), or per |,
sed or awk scripts.

3.2.2 Compilers and development environments

Based on the selection of the programming language, the selection of a compiler is
quite easy. Due to the resources available, the GNU C compiler (gcc) will be used.
This compiler also has the advantages that it is available on practically any platform
and that, on many platforms, it produces even better optimized programs than native
C compilers. Besides that, it is a free product and, therefore, we can be sure that no
licensing problems will occur.

The compilation of modules will be controlled using the make utility which is also
freely available for practically any platform. It may well be possible that during the
development the author decides to rely on advanced make features like the ability for
recursion which is found, e. g., in the GNU nmake utility.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 9

3 Tools and methods used in the development and documentation of software

Decisions on tools for configuring software distributions (considering, e. g. ports to
other platforms) may be made at a later point of time. This will, of course, also depend
on general decisions about software distribution. Nevertheless, at least portability to
different UNIX systems should be tested from time to time by compiling the complete
software on different UNIX platforms available locally, e. g. Solaris, IRIX, DG-UX, or
Linux.

Other development tools
The usage of other development tools (e. g. editors, development environments, or de-
buggers) are subject to each programmers personal preferences.

3.2.3 \ersioning

The decision on versioning control is one of the hardest of those described herein. Cur-
rently (August 14, 1998), the author has decided not to use any versioning control
system. Nevertheless, he feels committed to include version information in sources
and documentation. If, later however, the need for using a versioning control system
arises, e. g. because of different programmers working in parallel, this decision should
be changeable easily. In this case, the author currently would suggest using the RCS
system, since it is supported also by many other software systems, e. g. for documenta-
tion.

However, from the release of a first version for (internal) use on, a production ver-
sion and a development version should be maintained in parallel. Thus, there should
always be a working version available.

3.3 Portability

Portability of the software is a major topic for the program development within the
project. It should be possible to port software to any major platform with only little
difficulties. This will be supported through two steps:

1. Restriction to standard ANSI/ZISO C and
2. Frequent test compilations on different compilers and systems.

Prior experiences show that even self-restriction to the ANSI/ZISO C standard can not
guarantee portability. This is partly due to those areas where the C language speci-
fication allows space for different interpretations and, therefore, for differently acting
compiler implementations. Such problems will hopefully be detected and eliminated

10 Surmise Relations between Tests

3.3 Portability

by frequently compiling the software on different platforms. Currently, the following
platforms are available:

e Sun SPARC-station-20, Solaris 2.5.1, gcc 2.7.2
e Sun Ultra-2, Solaris 2.6, gcc 2.8.1
e SGI IPxx, IRIX64 6.2, native C compiler

e PC PPro, Linux 2.0.27, gcc 2.7.2

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 11

3 Tools and methods used in the development and documentation of software

12 Surmise Relations between Tests

4 Interfaces, main data structures, and file
formats

In this chapter, many decisions will be introduced in comparison to earlier decisions
made in the development of libraries for the work with knowledge spaces (henceforth
called | i bkst ; see, e.g. (1)). One important goal is the maintenance of compatibility
between old and new formats, tools, and libraries. As a consequence, it is likely that,
e.g., new libraries will get new names to enable the parallel usage of old and new
libraries.

4.1 Interfaces

This section describes general principles in the design of function interfaces.

Verbosity and debugging flag

Many of the KST-Tools use an optional verbosity flag to determine the extensity of in-
formation printed by the programs. In order to propagate the effects of such a flag
down to the library routines, the | i bsr bi library providesani nt ver bose (cf. Sec-
tion 6.1) which may be evaluated by the library functions. Programs using the library
may either set this flag or define it on their own.

Analogously to the ver bose flag, there exists also the possibility for a debug flag
(cf. Section 6.2).

4.2 Main data structures

421 Bitsets

The following discussion is based on the assumption that sets are represented as bit
vectors internally.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 13

4 Interfaces, main data structures, and file formats

Regarding functions dealing with sets, there are basically three possibilities to en-
sure that always correct universal set sizes are used:

1. Defining the universal set size as a global variable. This has the disadvantage of
restricting flexibility. 1t may well occur that set theoretical functions are needed
for subsets of different universal sets.

2. Defining a set data type which includes the size of the universal set. This ap-
proach has the disadvantage that, in families of sets, it may become necessary to
store the same number very often.

3. Passing the size of the universal set to each set function.

The last way may result in higher computation times but it seems to be the best solution.
Besides that, it is also the way used successfully in the old KST libraries.

Basic bitset size

An important question is, of course, which integer data type should be underlying
the bitset vector. Bitsets will be represented as vectors of int. This will describe 32
bit integer values on practical all systems. However, the explicit size is declared via
preprocessor #def i ne commands in the sr bi - set . h header file.

This decision was mainly a decision against using 64 bit technology. It might be
worth rethinking that decision when 64 bit technology and programming have stabi-
lized but, currently, it seems to be too less standardized.

4.2.2 Knowledge structures

The old libraries for the work with knowledge spaces do not use a complete structure
describing a knowledge space. Instead, a si npl espace, i.e. a vector of i nt numbers
representing the data matrix together with two separate i nt numbers specifying the
number of items and the number of states are used. This simple structure can eas-
ily become a source of error, especially in the cooperation of multiple programmers.
Therefore, new data structures are used containing complete information for a knowl-
edge space (or for a basis) and thus reducing the probability of programming errors.

14 Surmise Relations between Tests

4.3 File formats

4.2.3 Surmise relations

There exists a KST-Tool called dep- mat ri x printing a surmise relation as a matrix of
size@x Q. Thenewl i bsrbi library defines a datatype sr bi containing such a matrix
together with information about the number of items.

4.3 File formats

Previous experiences with tools dealing with knowledge structures have shown that a
classical UNIX assumption — The users have to know what they are doing; it is their respon-
sibility to ensure that parameters specified in program calls make sense — caused many prob-
lems with users not having an appropriate technical background. As a consequence,
tools developed in this project will use different file formats which simplify the iden-
tification of file format problems. Nevertheless, the new programs and functions will
accept both, the old and the new formats. Besides that, there will be conversion pro-
grams. These new formats (and the functions handling them) will step by step also
be introduced into already existing tools for the work with knowledge spaces. Thus it
will be guaranteed that all programs developed with the support by the author will be
compatible in their file formats.

4.3.1 Old file formats

Currently, there exist three main file formats:
e ASCII knowledge space files,
e binary knowledge space files, and
e basis files.
The basic pattern underlying all three file type can be described as follows:

Header
Number of Items
Number of States

Data Matrix
A Matrix with one column per item and one row per state stating if
and how the respective item is an element of the respective state.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 15

4 Interfaces, main data structures, and file formats

In knowledge space files, the data matrix contains a ‘1’ if an item is an element of a state
and a ‘0’ otherwise. These matrices can be represented in ASCII text format or in binary
format. In the latter case, one bit is used per item; a complete state, however, always
uses a multiple of 32 bits.

In basis files, two different cases of items being elements of states are distinguished.
The data matrix contains a ‘1’ if a state is minimal for the item regarded (i. e. for the
item ¢ and the state B, we have B € o(q) in mathematical terms), and it contains a ‘2’ if
the state contains the item without being minimal for it (i.e. ¢ € B but B ¢ o(q)).

For several programs, also answer pattern files are used. They are not mentioned
separately in the enumeration above, since they are in the same format as knowledge
space files.

4.3.2 Changes in the file formats

As already mentioned above, the main reason for defining new file formats were prob-
lems observed in using tools for the work with knowledge spaces. Basically, three kinds
of errors were observed:

Content mismatch: Users are confusing space files, basis files, and answer pattern
files.

Format errors: Users are confusing ASCII and binary formats for knowledge space
and answer pattern files. Some tools definitely require the one or the other format,
for other tools it may be specified by options which the users forget to apply.

Endian errors: The third kind of error which is quite hard to detect results from ex-
changing binary files between different hardware platforms. This is due to the
so—called Endian—problem, i.e. some machines store integer numbers with the
most significant byte (MSB) first while others store the least significant byte (LSB)
firstl, Most UNIX workstations use an MSB—first order (‘4-3-2-1°) while the Intel
PC processors (80x86 successors, and compatibles) use an LSB-first order (‘1-2-
3-4’). These differences make sharing binary files quite difficult and, therefore,
easily produce errors and/or require extra computations.

As a consequence, the file formats are changed by inserting a leading format line.
This line contains all necessary information (content type, version specification, content

L Actually there are even more forms. If the four bytes of an 32-bit-integer are numbered from ‘1’ (LSB)
to ‘4’ (MSB) then not only the orders ‘1-2-3-4’ and ‘4-3-2-1’ may occur but also orders like ‘3-4-1-2" or
2-1-4-3’.

16 Surmise Relations between Tests

4.3 File formats

encoding, Endian information, etc.; see appendix B.1). Functions reading files shall test
for such a line and, in case of nonexistence, make guesses depending on the contents.
In this case, a warning may be issued telling the user about the deprecated file format
and about the result of the guessing process.

4.3.3 Additional information about file contents

It may be useful to include into structure files information about the items, the preve-
nance of the structure etc. In the moment, this is supported through the provision of
a comment syntax. These comments, however, are not stored when reading a file and,
therefore, can not be re-stored in automatically produced filesd, either.

In future versions this should be changed by including an additional pointer to an
abstracti nf o structure in all knowledge space data types. For such an info structure, a
(sub) library could be written which provides all necessary functionality. Functions of
this library would be evoked, e. g. from the 10 functions of | i bsrbi and | i bsrbt.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 17

4 Interfaces, main data structures, and file formats

18 Surmise Relations between Tests

5 Special algorithms and methods

5.1 Selecting a student sample from large knowledge spaces

Sometimes knowledge spaces are too large to be stored in memory completely. If the
space is available as a file, however, it may be useful to select a sample directly from
that file. Such a procedure would read the header information from a knowledge space
file, randomly select a sequence of state numbers, sort this sequence, and copy the
corresponding knowledge states from the file into a dat a structure.

Another possibility, which would need even more computing resources, however,
would be a double construction of the knowledge space from the basis using the Gan-
ter algorithm (gant er _basi s(),see Section 19.3, organt er _struct ure(),see Sec-
tion 19.4, function). The first construction would be used to determine the size of the
knowledge space. Afterwards, again a sequence of state numbers would be randomly
selected and chosen. Finally, the space would be constructed a second time storing
all states selected in the second step into a dat a structure. Such a procedure would
be needed for knowledge spaces which are even too large to be stored on hard disks.
One should consider, however, that it might also be impossible to compute these spaces
within reasonable time at all.

5.2 Special methods in memory menagemant

Since prior personal experiences have shown that various memory functions are often
malfunctional, the functions cal | oc(), and mencpy() have not been used but their
functionality has been reprogrammed with other commands wherever needed.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 19

5 Special algorithms and methods

20 Surmise Relations between Tests

Part 11

General utility functionalities

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

21

This part documents a small number of general utility functions and variables de-
fined inthe sr bi - uti | . h header file.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 23

24

Surmise Relations between Tests

6 Verbosity flags

6.1 verbose

NAME

verbose — flag indicating verbosity mode

SYNOPSIS

#i nclude <srbi-util.h>

extern int verbose;

DESCRIPTION

The verbose flag indicates a verbosity mode.

6.2 debug

NAME

debug — flag indicating debug mode

SYNOPSIS

#i ncl ude <srbi-util.h>

extern int debug;

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

25

6 \Verbosity flags

DESCRIPTION

The verbose flag indicates a debugging mode.

26 Surmise Relations between Tests

7 Utility functions

7.1 random

NAME

random — Generating random numbers with larger domain.
SYNOPSIS

#i ncl ude <srbi-util.h>

extern | ong randon(void);

DESCRIPTION

On many systems, the rand() function from stdlib generates only 15bit integer numbers.
In such cases random() should produce 30bit integers.

This function uses stdlib’s rand() function and, therefore, can be influenced through
stdlib’s srand() function.

7.2 urandom

NAME

urandom — Generating random numbers with larger domain.

SYNOPSIS

#i ncl ude <srbi-util.h>

extern unsi gned int urandom(void);

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 27

7 Utility functions

DESCRIPTION

On many systems, the rand() function from stdlib generates only 15bit integer numbers.

In such cases urandom() should produce 32bit integers.
This function uses stdlib’s rand() function and, therefore, can be influenced through

stdlib’s srand() function.

28 Surmise Relations between Tests

Part 111

Functions dealing with plain sets

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

29

The functions documented in this part are defined in the sr bi - set . h header file.
These functions are divided into eight groups: creating and deleting sets, changing sets’
contents, 170 functions, set operating functions, set operating procedures, accumulat-

ing set operating procedures, set predicates, and functions for determining cardinali-
ties.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 31

32

Surmise Relations between Tests

8 Creating and deleting bitsets

8.1 new bitset

NAME

new_bitset — Create a new and empty bitset
SYNOPSIS

#i ncl ude <srbi-set.h>

extern bitset new bitset(int set_size);

PARAMETERS

int set_size
Size of the set to be created.

DESCRIPTION

Create a new and empty bitset.

8.2 random set

NAME

random_set — Create a new bitset with randomly selected elements.

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

8 Creating and deleting bitsets

extern bitset random set(int set_size);

PARAMETERS

int set_size
Size of the bitset.

DESCRIPTION

This function uses stdlib’s rand() routine. Therefore, it can be influenced through
stdlib’s srand() routine.

8.3 delete bitset

NAME

delete_bitset — Delete a bitset and return storage to the system
SYNOPSIS

#i ncl ude <srbi-set. h>

extern void delete_bitset(bitset a);

PARAMETERS

bitset a
Bitset to be deleted.

DESCRIPTION

Delete a bitset and return storage to the system.

84 copy_ bitset

NAME
copy_bitset — Make a copy of a bitset.

34 Surmise Relations between Tests

84 copy_bitset

SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset copy_bitset

(

bitset orig,
int set_size
)
PARAMETERS

bitset orig
Original bitset.

int set_size
Size of the bitset.

DESCRIPTION

New memory is allocated.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

35

8 Creating and deleting bitsets

36 Surmise Relations between Tests

9 Changing bitsets

9.1 set_excl

NAME

set_excl — Delete an item from a bitset
SYNOPSIS

#i ncl ude <srbi-set. h>

voi d set _excl

(
int item
bitset a,
int set_size
);
DESCRIPTION

Delete an item from a bitset.

9.2 set _incl
NAME

set_incl — Add an item to a bitset

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

37

9 Changing bitsets

voi d set _i ncl

(
int item
bitset a,
int set_size
),

DESCRIPTION
Add an item to a bitset.

9.3 set _bitset

NAME
set_bitset — Copy a bitset into another bitset

SYNOPSIS

#i ncl ude <srbi-set. h>

extern int set bitset

(
bitset copy,
bitset orig,
int set_size
)
PARAMETERS
bitset copy
Destination bitset.
bitset orig
Original bitset.
int set_size

Size of the bitset.

38

Surmise Relations between Tests

9.3 set _bitset

DESCRIPTION
Copy a bitset into another bitset.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

39

9 Changing bitsets

40

Surmise Relations between Tests

10 1/0O functions for bitsets

10.1 ascii _read

NAME

ascii_read — Read a bitset from an ASCII file.

SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset ascii_read

(
FILE *in,
int set_size

DESCRIPTION

New memory is allocated.

10.2 ascii_wite
NAME

ascii_write — Write a bitset to an ASCII file.

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

41

10 1/0 functions for bitsets

extern int ascii_wite

(
FI LE *out,
bitset a,
int set_size

)

DESCRIPTION

Write a bitset to an ASCII file.

10.3 bin_read

NAME

bin_read — Read a bitset from an binary file.

SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset bin_read

(
FILE *in,
int set_size

),

DESCRIPTION

New memory is allocated.

104 bin wite

NAME

bin_write — Write a bitset to an binary file.

42

Surmise Relations between Tests

104 bin wite

SYNOPSIS

#i ncl ude <srbi-set. h>

extern int bin wite

(
FI LE *out,

bitset a,
int set_size

),

DESCRIPTION

Write a bitset to an binary file.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

43

10

170 functions for bitsets

44

Surmise Relations between Tests

11 Set operating functions

11.1 conpl enent

NAME

complement — Determine the complement of a bitset

SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset conpl enent

(

bitset orig,
int set_size

DESCRIPTION

Determine the complement of a bitset.

11.2 set _uni on
NAME

set_union — Compute the union of two bitsets with a function

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

45

11 Set operating functions

extern bitset set_union

(

bi tset a,

bi tset b,

int set_size
)
DESCRIPTION

Compute the union of two bitsets with a function.

11.3 section

NAME

section — Compute the intersection of two bitsets with a function
SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset section

(
bitset a,
bitset b,
int set_size
);
DESCRIPTION

Compute the intersection of two bitsets with a function.

114 set diff

NAME

set_diff — Compute the set difference of two bitsets with a function

46 Surmise Relations between Tests

11.5 symmdiff

SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset set diff

(

bitset a,

bi tset b,

int set_size
),

DESCRIPTION

Compute the set difference of two bitsets with a function.

11.5 symmdi ff

NAME

symm_diff — Compute the symmetrical set difference of two bitsets with a function

SYNOPSIS

#i ncl ude <srbi-set. h>

extern bitset symmdiff

(

bi tset a,

bi tset b,

int set_size
)

DESCRIPTION

Compute the symmetrical set difference of two bitsets with a function.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 47

11 Set operating functions

48

Surmise Relations between Tests

12 Set operating procedures

12.1 conp_uni on

NAME

comp_union — Compute the union of two bitsets with a procedure

SYNOPSIS

#i ncl ude <srbi-set. h>

extern void conp_uni on

(

bitset result,
bi tset a,
bitset b,
int set_size

DESCRIPTION

Compute the union of two bitsets with a procedure.

12.2 conp_section

NAME

comp_section — Compute the intersection of two bitsets with a procedure

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 49

12 Set operating procedures

SYNOPSIS

#i ncl ude <srbi-set. h>

extern void conp_section

(
bitset result,
bitset a,
bi tset b,
int set_size
)

DESCRIPTION

Compute the intersection of two bitsets with a procedure.

12.3 conp_set _diff

NAME

comp_set_diff — Compute the set difference of two bitsets with a procedure

SYNOPSIS

#i ncl ude <srbi-set. h>

extern void conp_set _diff

(
bitset result,
bitset a,
bitset b,
int set_size
);

DESCRIPTION

Compute the set difference of two bitsets with a procedure.

50 Surmise Relations between Tests

124 conp_symmdi f f

124 conp_symmdi f f

NAME

comp_symm_diff — Compute the symmetrical set difference of two bitsets with a pro-
cedure

SYNOPSIS

#i ncl ude <srbi-set. h>

extern void conmp_symmdi f f

(

bitset result,
bitset a,
bitset b,
int set_size

),

DESCRIPTION

Compute the symmetrical set difference of two bitsets with a procedure.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 51

12 Set operating procedures

52 Surmise Relations between Tests

13 Accumulative set operating procedures

13.1 acc_uni on

NAME

acc_union — Compute the accumulated union of two bitsets
SYNOPSIS

#i ncl ude <srbi-set. h>

extern void acc_union

(
bitset result,
bitset op,
int set_size
);
DESCRIPTION

Compute the accumulated union of two bitsets.

13.2 acc_section

NAME

acc_section — Compute the accumulated intersection of two bitsets

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

53

13 Accumulative set operating procedures

extern void acc_section

(
bitset result,
bitset op,
int set_size
);
DESCRIPTION

Compute the accumulated intersection of two bitsets.

13.3 acc_set _diff
NAME

acc_set_diff — Compute the accumulated set difference of two bitsets

SYNOPSIS

#i ncl ude <srbi-set. h>

extern void acc_set _diff

(

bitset result,
bitset op,
int set_size

),

DESCRIPTION

Compute the accumulated set difference of two bitsets.

13.4 acc_symmdi ff

NAME

acc_symm_diff — Compute the accumulated symmetrical set difference of two bitsets

54 Surmise Relations between Tests

134 acc_symmdiff

SYNOPSIS

#i ncl ude <srbi-set. h>

extern void acc_symmdiff

(

bitset result,
bitset op,
int set_size

),

DESCRIPTION

Compute the accumulated symmetrical set difference of two bitsets.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

55

13 Accumulative set operating procedures

56 Surmise Relations between Tests

14 Set predicates

14.1 is_el enent

NAME

is_element — Test if a bitset contains an item
SYNOPSIS

#i ncl ude <srbi-set. h>

extern int is_el ement

(
int item
bitset a,
int set_size
);
DESCRIPTION

Test if a bitset contains an item.

142 enptyset
NAME

emptyset — Test if a set is empty

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

57

14 Set predicates

extern int enptyset

(

bitset a,
int set_size

DESCRIPTION

Test if a set is empty.

14.3 equal

NAME

equal — Test if two subsets are equal
SYNOPSIS

#i ncl ude <srbi-set. h>

extern int equal

(
bitset a,
bitset b,
int set_size
);
DESCRIPTION

Test if two subsets are equal.

14.4 subset

NAME

subset — Test if a bitset is a subset of another

58 Surmise Relations between Tests

14.5 subset eq

SYNOPSIS

#i ncl ude <srbi-set. h>

extern int subset

(

bitset a,
bi tset b,
int set_size

),

DESCRIPTION

Test if a bitset is a subset of another.

145 subseteq

NAME

subseteq — Test if a bitset is subset of or equal to another
SYNOPSIS

#i ncl ude <srbi-set. h>

extern int subseteq

(

bi tset a,

bi tset b,

int set_size
)
DESCRIPTION

Test if a bitset is subset of or equal to another.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

59

14 Set predicates

60 Surmise Relations between Tests

15 Cardinalities

15.1 cardinality

NAME

cardinality — Determine the cardinality, i.

SYNOPSIS

#i ncl ude <srbi-set. h>

extern int cardinality

(

bitset a,
int set_size

DESCRIPTION

E. The number of elements of a bitset.

15.2 uni on_si ze
NAME

union_size — Determine the size of the union of two bitsets

SYNOPSIS

#i ncl ude <srbi-set. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

61

15 Cardinalities

extern int union_size

(

bi tset a,

bi tset b,

int set_size
)

DESCRIPTION

Determine the size of the union of two bitsets.

15.3 section_size

NAME

section_size — Determine the size of the intersection of two bitsets
SYNOPSIS

#i ncl ude <srbi-set. h>

extern int section_size

(
bitset a,
bitset b,
int set_size
);
DESCRIPTION

Determine the size of the intersection of two bitsets.

154 set _diff_size

NAME

set_diff_size — Determine the size of the ordinary set difference of two bitsets

62 Surmise Relations between Tests

155 symm diff_size

SYNOPSIS

#i ncl ude <srbi-set. h>

extern int set _diff_size

(

bitset a,

bi tset b,

int set_size
),

DESCRIPTION

Determine the size of the ordinary set difference of two bitsets.

155 symm diff_size

NAME

symm_diff_size — Determine the size of the symmetrical set difference of two bitsets
SYNOPSIS

#i ncl ude <srbi-set. h>

extern int symmdiff_size

(

bi tset a,

bi tset b,

int set_size
)

DESCRIPTION

Determine the size of the symmetrical set difference of two bitsets.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 63

15 Cardinalities

64 Surmise Relations between Tests

Part IV

Functions dealing with knowledge
spaces

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

65

15

The functions documented in this part are defined inthe sr bi - space. handfi | e-
t ype. h header files. The functions from sr bi - space. h are divided into four groups,
functions for creating and deleting knowledge spaces, 1/0 functions, functions for con-
verting knowledge spaces from one representation to another, and functions to select
sub spaces and to simulate students. Additionally, sr bi - space. h defines variables
which may be applied for controlling the verbosity of programs using these functions.

Thefi | et ype. h header file contains a number of type, variable, and function def-
initions regarding types and formats of files.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 67

15

68

Surmise Relations between Tests

16 Creating, copying, and deleting

knowledge spaces

16.1 new_space

NAME

new_space — Allocate memory for a knowledge space.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern space *new_space

(
int gq_size,
int s_size
);
PARAMETERS

int q_size
Number of items.

ints_size
Number of states.

DESCRIPTION

Allocate memory for a knowledge space.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

69

16 Creating, copying, and deleting knowledge spaces

16.2 new basi s

NAME

new_basis — Allocate memory for a basis.

SYNOPSIS

#i ncl ude <srbi - space. h>

extern basis *new basis

(
int g_size,
int b_size

PARAMETERS

int q_size
Number of items.

int b_size
Number of clauses.

DESCRIPTION

Allocate memory for a basis.

16.3 new structure

NAME

new_structure — Allocate memory for a knowledge structure.
SYNOPSIS

#i ncl ude <srbi -space. h>

extern structure *new structure

70 Surmise Relations between Tests

16.4 new dat a

int g_size,
int s_size

PARAMETERS

int q_size
Number of items.

int s_size
Number of states.

DESCRIPTION

Allocate memory for a knowledge structure.

16.4 new data

NAME

new_data — Allocate memory for a data set.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern data *new data

(
int gq_size,
int s_size

PARAMETERS

int q_size
Number of items.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

71

16 Creating, copying, and deleting knowledge spaces

int s_size
Number of patterns.

DESCRIPTION

Allocate memory for a data set.

16.5 new patterns

NAME

new_patterns — allocate memory for a pattern set.

SYNOPSIS

#i ncl ude <patterns. h>

patterns *new patterns

(
int g_size,
int p_size

),

DESCRIPTION

@Param q_size number of items @param p_size number of patterns.

16.6 new_sr bi

NAME

new_srbi — Allocate memory for a surmise relation.
SYNOPSIS

#i ncl ude <srbi -space. h>

extern srbi *new_srbi (int g_size);

72 Surmise Relations between Tests

16.7 free_space

PARAMETERS

int q_size
Number of items.

DESCRIPTION

Allocate memory for a surmise relation.

16.7 free_space

NAME

free_space — Return memory used by a space to the system.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern void free_space(space **s);

DESCRIPTION

Return memory used by a space to the system.

16.8 free _basis

NAME

free_basis — Return memory used by a basis to the system.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern void free_basis(basis **b);

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

73

16 Creating, copying, and deleting knowledge spaces

DESCRIPTION

Return memory used by a basis to the system.

169 free_structure

NAME

free_structure — Return memory used by a structure to the system.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern void free_structure(structure **s);

DESCRIPTION

Return memory used by a structure to the system.

16.10 free_data

NAME

free_data — Return memory used by a data set to the system.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern void free_data(data **s);

DESCRIPTION

Return memory used by a data set to the system.

74 Surmise Relations between Tests

16.11 free_patterns

16.11 free_patterns

NAME

free_patterns — Return memory used by a pattern set to the system
SYNOPSIS

#i ncl ude <patterns. h>

void free_patterns(patterns **p);

DESCRIPTION

@Param p patterns set.

16.12 free_srb

NAME

free_srbi — Return memory used by a surmise relation
SYNOPSIS

#i ncl ude <srbi -space. h>

extern void free_srbi(srbi **r);

DESCRIPTION

Return memory used by a surmise relation.

16.13 copy_space

NAME

copy_space — Make a copy of an existing knowledge space.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 75

16 Creating, copying, and deleting knowledge spaces

SYNOPSIS

#i ncl ude <srbi -space. h>
extern space *copy_space(space *orig);

DESCRIPTION

Make a copy of an existing knowledge space.

16.14 copy_basis

NAME

copy_basis — Make a copy of an existing basis.
SYNOPSIS

#i ncl ude <srbi -space. h>

extern basis *copy_basi s(basis *orig);

DESCRIPTION

Make a copy of an existing basis.

16.15 copy_structure

NAME

copy_structure — Make a copy of an existing knowledge structure.
SYNOPSIS

#i ncl ude <srbi -space. h>

extern structure *copy_structure(structure *orig);

76 Surmise Relations between Tests

16.16

copy_data

DESCRIPTION

Make a copy of an existing knowledge structure.

16.16 copy_data

NAME

copy_data — Make a copy of an existing data set.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern data *copy_data(data *orig);

DESCRIPTION

Make a copy of an existing data set.

16.17 copy_patterns

NAME

copy_patterns — make a copy of a set of patterns.

SYNOPSIS

#i ncl ude <patterns. h>

patterns *copy_patterns(patterns *orig);

DESCRIPTION

The necessary memory is allocated. @Param orig original patterns to be copied @return

pointer to copied patterns.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

77

16 Creating, copying, and deleting knowledge spaces

16.18 random dat a

NAME

random_data — Create a random data set.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern data *random dat a

(
int g_size,
int s_size

),

PARAMETERS

int q_size
Number of items.

ints_size
Number of patterns.

DESCRIPTION

All subsets of items are equally probable. Repetitions are possible.

78

Surmise Relations between Tests

17 Extracting and setting knowlede states

17.1 copy_state

NAME

copy_state — Copy a single knowledge state from a knowledge space.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern bitset copy_state

(

space *s,

int position
);
PARAMETERS

space *s
Space from which the state is to be copied.

int position
Index of the state to be copied.

DESCRIPTION

New memory is allocated.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

17 Extracting and setting knowlede states

17.2 get_state

NAME

get_state — Get a single knowledge state from a knowledge space.

SYNOPSIS

#i ncl ude <srbi - space. h>

extern bitset get_state

(
space *s,
int position

PARAMETERS

space *s
Space from which the state is to be copied.

int position
Index of the state to be copied.

DESCRIPTION

No new memory is allocated.

17.3 set _state

NAME

set_state — Set a knowledge state within a knowledge space.
SYNOPSIS

#i ncl ude <srbi -space. h>

extern int set _state

80 Surmise Relations between Tests

17.4 copy_pattern

space *s,
i nt position,
bitset b

)

PARAMETERS

space *s
Knowledge space.

int position
Index of the state to be set.

bitset b
New value of the state.

DESCRIPTION

Set a knowledge state within a knowledge space.

17.4 copy_pattern

NAME

copy_pattern — Copy a single answer pattern from a data set.

SYNOPSIS

#i ncl ude <srbi -space. h>

bi tset copy_pattern
(

data *s,
int position

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

81

17 Extracting and setting knowlede states

PARAMETERS

data *s
Data set from which the answer pattern is to be copied.

int position
Index of the answer pattern to be copied.

DESCRIPTION

New memory is allocated.

175 get _pattern

NAME

get_pattern — Get a single answer pattern from a data set.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern bitset get _pattern

(
data *d,

int position
)
PARAMETERS

data *d
Data set from which the answer pattern is to be copied.

int position
Index of the answer pattern to be copied.

DESCRIPTION

No new memory is allocated.

82 Surmise Relations between Tests

17.6 set_pattern

176 set _pattern
NAME

set_pattern — Set a answer pattern within a data set space.

SYNOPSIS

#i ncl ude <srbi -space. h>

extern int set_pattern

(
data *d,

i nt position,
bitset b

),

PARAMETERS

data *d
Data set.

int position
Index of the answer pattern to be set.

bitset b
New value of the answer pattern.

DESCRIPTION

Set a answer pattern within a data set space.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

83

17 Extracting and setting knowlede states

84 Surmise Relations between Tests

18 1/0 functions for knowledge spaces on
Items

18.1 | oad basis

NAME

load_basis — load a basis from a file

SYNOPSIS

#i ncl ude <srbi -space. h>

basi s *I oad_basi s(const char filenane[]);

PARAMETERS

const char filename|[]
Name of the file to be loaded.

DESCRIPTION

This function loads a basis from a file. It determines automatically which type of data
is stored in the file and performs a squeeze operation on the data if necessary.

RETURNS

Pointer to resulting basis.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 85

18 1/0 functions for knowledge spaces on items

18.2 | oad_space

NAME

load_space — load a space from a file

SYNOPSIS

#i ncl ude <srbi -space. h>

space *| oad_space(const char filenange[]);

PARAMETERS

const char filename|[]
Name of the file to be loaded.

DESCRIPTION

This function loads a space from a file. It determines automatically which type of data
is stored in the file and performs a constr operation on the data if necessary.

RETURNS

Pointer to resulting space.

18.3 | oad structure

NAME

load_structure — load a structure from a file

SYNOPSIS

#i ncl ude <srbi -space. h>

structure *load_structure(const char filename[]);

86 Surmise Relations between Tests

184

| oad _data

PARAMETERS

const char filename[]
Name of the file to be loaded.

DESCRIPTION

This function loads a structure from a file.

RETURNS

Pointer to resulting structure.

18.4 | oad data

NAME

load_data — load a data set from a file

SYNOPSIS

#i ncl ude <srbi -space. h>
data *| oad_dat a(const char filenane[]);

PARAMETERS

const char filename[]
Name of the file to be loaded.

DESCRIPTION

This function loads a data set from a file.

RETURNS

Pointer to resulting data set.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

87

18 1/0 functions for knowledge spaces on items

18,5 | oad _patterns

NAME

load_patterns — load a pattern set from a file.

SYNOPSIS

#i ncl ude <patterns. h>

patterns *|l oad_patterns(const char filenange[]);

DESCRIPTION

This function loads a pattern set from a file. @Return pointer to resulting pattern set.
@Param filename[] name of the file to be loaded.

18.6 | oad_sr bi

NAME

load_srbi — load a surmise relation from a file

SYNOPSIS

#i ncl ude <srbi -space. h>

srbi *l oad_srbi (const char filenane[]);

PARAMETERS

const char filename|[]
Name of the file to be loaded.

DESCRIPTION

This function loads a surmise relation from a file.

88 Surmise Relations between Tests

18.7 save_basis

RETURNS

Pointer to resulting surmise relation.

18.7 save_basis

NAME

save_basis — write a basis to a file

SYNOPSIS

#i ncl ude <srbi - space. h>

i nt save_basis

(
basis *b,
filetype node,
const char filenange[]

),

PARAMETERS

basis *b
Basis to be stored.

filetype mode
Format to be used.

const char filename|[]
Name of the file to be saved.

DESCRIPTION

This function writes a basis to a file using the new basisfile format.

RETURNS

Error code.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

89

18 1/0 functions for knowledge spaces on items

18.8 save_space

NAME

save_space — write a knowledge space to a file

SYNOPSIS

#i ncl ude <srbi -space. h>

i nt save_space

(
space *s,
filetype node,
const char filenane[]

),

PARAMETERS

space *s
Space to be stored.

filetype mode
Format to be used.

const char filename|[]
Name of the file to be saved.

DESCRIPTION

This function writes a knowledge space to a file using the new spacefile format.

RETURNS

Error code.

90 Surmise Relations between Tests

18.9 save_structure

189 save structure

NAME

save_structure — write a knowledge structure to a file

SYNOPSIS

#i ncl ude <srbi -space. h>

i nt save_structure

(
structure *s,
filetype node,
const char filenane[]
)
PARAMETERS

structure *s
Structure to be stored.

filetype mode
Format to be used.

const char filename|[]
Name of the file to be saved.

DESCRIPTION

This function writes a knowledge structure to a file using the new structurefile format.

RETURNS

Error code.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 91

18 1/0 functions for knowledge spaces on items

18.10 save _data

NAME

save_data — write a data set to a file

SYNOPSIS

#i ncl ude <srbi -space. h>

i nt save_data

(

data *s,
filetype node,
const char filenane[]

),

PARAMETERS

data *s
Data to be stored.

filetype mode
Format to be used.

const char filename|[]
Name of the file to be saved.

DESCRIPTION

This function writes a data set to a file using the new datafile format.

RETURNS

Error code.

92 Surmise Relations between Tests

18.11 save_patterns

18.11 save_patterns

NAME

save_patterns — write a pattern set to a file.
SYNOPSIS

#i ncl ude <patterns. h>

i nt save_patterns

(
patterns *pa,
filetype node,
const char filenange[]
);
DESCRIPTION

This function writes a set of answer patterns to a file using the new patternfile format.
@Return error code. @Param pa patterns to be stored @param mode format to be used
@param filename[] name of file to be saved.

18.12 save_sr bi

NAME

save_srbi — write a surmise relation to a file

SYNOPSIS

#i ncl ude <srbi -space. h>

i nt save_srbi

(
srbi *r,
const char filenange[]

),

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 93

18 1/0 functions for knowledge spaces on items

PARAMETERS

srbi *r
Surmise relation to be stored.

const char filename[]
Name of the file to be saved.

DESCRIPTION

This function writes a surmise relation to a file using the new relationfile format.

RETURNS

Error code.

18.13 wite patterns

NAME

write_patterns — write a set of answer-patterns to stdout.
SYNOPSIS

#i ncl ude <patterns. h>

int wite_patterns(patterns *pa);

DESCRIPTION

Write a set of answer patterns to stdout, using '1’ for a correct solved item, ’0’ for a
wrong solution and *x’ for a not answered item. @Return -1, if an error occured, 0 else.

18.14 write_srbhi

NAME

write_srbi — write a surmise relation as a matrix

94 Surmise Relations between Tests

1814 write_srhi

SYNOPSIS

#i ncl ude <srbi -space. h>

int wite_srhbi

(
FILE *f,

srbi *m
)
PARAMETERS

FILE *f
FILE to write into.

srbi *m
Matrix to be written.

DESCRIPTION

This function writes the matrix of a surmise relation to a stream. No header information
are written.

RETURNS

Error code.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 95

18 1/0 functions for knowledge spaces on items

96 Surmise Relations between Tests

19 Conversion of various data structures

19.1 constr _basis

NAME

constr_basis — close a basis under union

SYNOPSIS

#i ncl ude <srbi -space. h>

space *constr_basi s(basis *b);

PARAMETERS

basis *b
Basis to be closed.

DESCRIPTION

This function computes the closure under union of the basis specified. Currently, Dowl-
ing’s (1993) algorithm is used.

RETURNS

Pointer to resulting knowledge space.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 97

19 Conversion of various data structures

19.2 constr_structure

NAME

constr_structure — close a structure under union

SYNOPSIS

#i ncl ude <srbi -space. h>

space *constr_structure(structure *s);

PARAMETERS

structure *s
Structure to be closed.

DESCRIPTION

This function computes the closure under union of the structure specified. Currently,
Dowling’s (1993) algorithm is used.

RETURNS

Pointer to resulting knowledge space.

19.3 ganter_basis

NAME

ganter_basis — close a basis under union using the Ganter algorithm

SYNOPSIS

#i ncl ude <srbi -space. h>

int ganter_basis

(

basis *b,

98 Surmise Relations between Tests

19.4 ganter_structure

filetype node,
const char filenange[]

),

PARAMETERS

basis *b
Basis to be closed.

filetype mode
File format.

const char filename|[]
Filename for resulting space.

DESCRIPTION

This function takes a basis and computes its closure under union using the algorithm
developed by Ganter. The result is directly stored into a file.

RETURNS

Number of states of the resulting knowledge space. Negative in case of an error.

Warning
Not yet implemented!

19.4 ganter _structure

NAME

ganter_structure — close a structure under union using the Ganter algorithm

SYNOPSIS

#i ncl ude <srbi -space. h>

int ganter_structure

(

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 99

19 Conversion of various data structures

structure *s,
fil etype node,
const char filenane[]

),

PARAMETERS

structure *s
Structure to be closed.

filetype mode
File format.

const char filename[]
Filename for resulting space.

DESCRIPTION

This function takes a structure and computes its closure under union using the algo-
rithm developed by Ganter. The result is directly stored into a file.

RETURNS

Number of states of the resulting knowledge space. Negative in case of an error.

Warning
Not yet implemented!

19.5 squeeze

NAME

squeeze — determine basis of a structure
SYNOPSIS

#i ncl ude <srbi -space. h>

basi s *squeeze(structure *s);

100

Surmise Relations between Tests

19.6 dep_matrix

PARAMETERS

structure *s
Knowledge structure to be squeezed.

DESCRIPTION

This function computes the minimal elements of a given knowledge structure. The set
of minimal elements is the basis of the space which would be the result of closing the
structure under union.

RETURNS

Pointer to the resulting basis.

19.6 dep_matrix

NAME

dep_matrix — determine SRBI matrix from a basis

SYNOPSIS

#i ncl ude <srbi -space. h>

srbi *dep_matrix(basis *b);

PARAMETERS
basis *b

Basis describing the surmise relation.
DESCRIPTION

This function takes a basis, checks whether it describes a surmise relation, and stores it
as a SRBI structure.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 101

19 Conversion of various data structures

RETURNS

Pointer to the resulting SRBI structure. NULL if the structure cannot be generated, e.g.

If the basis does not describe a surmise relation.

19.7 cl ause_set

NAME

clause_set — Determine the set of states of a basis

SYNOPSIS

#i ncl ude <srbi -space. h>

structure *clause_set(basis *b);

DESCRIPTION

Allocate memory for a simplespace and fill it with the complete clauses which are given

in partitioned form in the basis_struct structure.

19.8 get cl ause

NAME

get_clause — Determine a clause

SYNOPSIS

#i ncl ude <srbi -space. h>

extern bitset get_clause

(
basis *b,
i nt index

),

102

Surmise Relations between Tests

19.9 clause_cardinality

PARAMETERS

basis *b
The basis where the clause is found in.

int index
The position of the clause in the basis.

DESCRIPTION

Clauses, i.e. Knowledge states which are members of the basis, are partitioned into two
subsets: the set of items for which the clause is minimal and the set of items which
are elements of the clause but for which the clause is not minimal. Therefore we have
specific functions in the spacelib.

19.9 clause cardinality

NAME

clause_cardinality — Compute the size of a clause

SYNOPSIS

#i ncl ude <srbi -space. h>

int clause_cardinality

(
basis *b,
i nt index

),

PARAMETERS

basis *b
The basis where the clause is found in.

int index
The position of the clause in the basis.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 103

19 Conversion of various data structures

DESCRIPTION

Clauses, i.e. Knowledge states which are members of the basis, are partitioned into two
subsets: the set of items for which the clause is minimal and the set of items which
are elements of the clause but for which the clause is not minimal. Therefore we have
specific functions in the spacelib.

RETURNS

Return codes: >= 0 Size of the clause -1 basis is NULL pointer -2 index > basis->b_size.

19.10 patterns2data

NAME

patterns2data — convert pattern set to data set.

SYNOPSIS

#i ncl ude <patterns. h>

data *patterns2data(patterns *p);

DESCRIPTION

This function takes a pattern set and converts it to a data set assuming that all un-
answered items are not mastered. @Param p patterns structure @return pointer to re-
sultin data set.

19.11 dat a2patterns

NAME

data2patterns — convert data set to pattern set

104 Surmise Relations between Tests

19.11 dat a2patterns

SYNOPSIS

#i ncl ude <patterns. h>

patterns *data2patterns(data *d);

DESCRIPTION

This function is mere a cast operator. In the resulting pattern set, all items are consid-
ered to be answered, i.e. The un-answered matrix is set to zero. @Param d data set
@return pointer to resulting patterns set.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 105

19 Conversion of various data structures

106 Surmise Relations between Tests

20 Deriving knowledge spaces with certain
properties

20.1 wel | grade

NAME

wellgrade — Compute a wellgraded basis

SYNOPSIS

#i ncl ude <srbi -space. h>
basis *wel | grade(basis *b);

DESCRIPTION

This fuction computes the basis of a wellgraded space which is a superset of the space
described through the basis given as a parameter. Wellgradedness can not be reached
through a closure operator since, for a non-wellgraded knowledge space, there does
not exist a unique smallest wellgraded knowledge space as a superset.

Here, the decision is to partition basis elements causing non-wellgradedness into a
prerequisite subset and a new items subset. In the resulting wellgraded basis, each non-
wellgraded element is substituted by the family of all sets of the form prerequisite subset
+ single new item.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 107

20 Deriving knowledge spaces with certain properties

108 Surmise Relations between Tests

21 Selecting sub spaces and simulating

students

21.1 mask basi s

NAME

mask_basis — Reduce a basis to a subset of items

SYNOPSIS

#i ncl ude <srbi -space. h>

extern basis *mask _basis

(

basis *b,

bi tset mask
)
PARAMETERS

basis *b
Original basis.

bitset mask
Item set of reduced basis.

DESCRIPTION

Reduce a basis to a subset of items.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

109

21 Selecting sub spaces and simulating students

21.2 mask_space

NAME

mask_space — Reduce a knowledge space to a subset of items

SYNOPSIS

#i ncl ude <srbi - space. h>

extern space *mask_space

(
space *s,
bitset mask

PARAMETERS

space *s
Original space.

bitset mask
Item set of reduced space.

DESCRIPTION

Reduce a knowledge space to a subset of items.

21.3 mask _data
NAME

mask_data — Reduce a data set to a subset of items

SYNOPSIS

#i ncl ude <srbi -space. h>

extern data *mask_data

110 Surmise Relations between Tests

21.4 equal _sanple

data *d,
bi t set mask

PARAMETERS

data *d
Original data set.

bitset mask
Item set of reduced patterns.

DESCRIPTION

Reduce a data set to a subset of items.

21.4 equal _sanpl e

NAME

equal_sample — select sequence of states under equal distribution

SYNOPSIS

#i ncl ude <srbi -space. h>

data *equal _sanpl e

(
structure *s,
int size

)

PARAMETERS

structure *s
Source structure of the sample.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 111

21 Selecting sub spaces and simulating students

int size
Size of the sample.

DESCRIPTION

This function selects from a knowledge space a sequence of knowledge states assuming
equal distribution. This is to be used as simulated data. Some noise (careless errors and
lucky guesses) may be added via the mk_noisy() function.

This function uses stdlib’s rand() routine. Therefore, it can be influenced through

stdlib’s srand() routine.

RETURNS

Pointer to the selected data.

21.5 nk_noi sy

NAME

mk_noisy — add noise to a set of data

SYNOPSIS

#i ncl ude <srbi -space. h>

data *nk_noi sy

(
data *d,
int *beta,
int *eta
),
PARAMETERS
data *d
Original ‘clean’ data set.
int *beta

Beta values in per thousand.

112

Surmise Relations between Tests

21.5 nk_noi sy

int *eta
Eta values in per thousand.
DESCRIPTION

This function adds noise, i.e. Careless errors and lucky guesses to a data set. Noise is
added according to the model developed by Falmagne and Doignon.

This function uses stdlib’s rand() routine. Therefore, it can be influenced through
stdlib’s srand() routine.

RETURNS

Pointer to noisy data.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 113

21 Selecting sub spaces and simulating students

114 Surmise Relations between Tests

22 File type and version (fi | et ype. h)

22.1 structtype_nanes

NAME

structtype_names — Strings describing the various structure types.

SYNOPSIS

#i ncl ude <filetype. h>

extern const char *structtype_nanes[];

DESCRIPTION

Strings describing the various structure types.

22.2 srbt _version

NAME

srbt_version — String containing SRBT mark and version.

SYNOPSIS

#i ncl ude <filetype. h>

extern const char srbt_version[];

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 115

22 File type and version (fi | et ype. h)

DESCRIPTION

Version 2.0 marks the new format header lines. Version 1.0 is to be used for the ‘old”
KST format.

22.3 type of file

NAME
type_of_file — Checks for the type of an SRBI/SRBT file.

SYNOPSIS
#i ncl ude <filetype. h>

extern filetype type_of file(const char *fil enane);

PARAMETERS

const char *filename
Name of file to be tested.

DESCRIPTION

Type_of_file() opens a file and tries to find out which type of SRBI/SRBT data are stored
in the file. It is closed afterwards, again.

RETURNS

Type of file including type of contents and additional attributes. Filetypes contain in
the lower eight bits the structtype, in the next eight bits there are format specifications,
and the next 16 bits contain the wordsize for binary files.

WARNING

Old-style binary files are always identified as data files since we can assume none of
the stricter conditions to be fulfilled for knowledge structures or knowledge spaces.

116 Surmise Relations between Tests

Part V

Internal 10 functions for knowledge
spaces

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 117

22

The functions documented in this part are defined in the i nt er nal / sr bi - space-
i 0. h header file. They are devided into two groups, functions for knowledge spaces
and functions for bases. Since the internal representations for knowledge spaces, knowl-
edge structuresw, and data sets are basically identical, they are not distinguished on this
level.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 119

22

120 Surmise Relations between Tests

23 1/0O functions for knowledge spaces on

items

23.1 aopeni _space

NAME

aopeni_space — Open a spacefile in ASCII format for reading

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern FILE *aopeni _space

(

const char *fil enane,
int *g_size,
int *s_size

DESCRIPTION

Open a spacefile in ASCII format for reading.

23.2 aopeno_space

NAME

aopeno_space — Open a spacefile in ASCII format for writing

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

121

23 1/0 functions for knowledge spaces on items

SYNOPSIS
#i ncl ude <srbi-space-io. h>
extern FILE *aopeno_space

(

const char *fil enane,
int g_size,
int s_size

),

DESCRIPTION

Open a spacefile in ASCII format for writing.

23.3 ard_space

NAME

ard_space — Read a complete knowledge space in ASCII format.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern space *ard_space(const char *fil enane);

DESCRIPTION

Read a complete knowledge space in ASCII format.

23.4 aw _space

NAME

awr_space — Write a complete knowledge space in ASCII format.

122 Surmise Relations between Tests

23.5 bopeni _space

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern int aw _space

(
const char *fil enange,
space *s

)

PARAMETERS

const char *filename
Name of spacefile.

space *s

Pointer to space structure.

DESCRIPTION

Write a complete knowledge space in ASCII format.

23.5 bopeni space

NAME

bopeni_space — Open a spacefile in binary format for reading

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern FILE *bopeni _space
(
const char *fil enange,
int *qg_size,
int *s_size

),

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

123

23 1/0 functions for knowledge spaces on items

DESCRIPTION

Open a spacefile in binary format for reading.

23.6 bopeno_space

NAME

bopeno_space — Open a spacefile in binary format for writing

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern FILE *bopeno_space

(
const char *fil enange,
int gq_size,
int s_size

),

DESCRIPTION

Open a spacefile in binary format for writing.

23.7 brd_space

NAME

brd_space — Read a complete knowledge space in binary format.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern space *brd_space(const char *fil enane);

124 Surmise Relations between Tests

23.8 bw _space

DESCRIPTION

Read a complete knowledge space in binary format.

23.8 bwr _space

NAME

bwr_space — Write a complete knowledge space in binary format.
SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern int bw _space

(
const char *fil enane,
space *s

),

PARAMETERS

const char *filename
Name of spacefile.

space *s
Pointer to space structure.

DESCRIPTION

Write a complete knowledge space in binary format.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 125

23 1/0 functions for knowledge spaces on items

126 Surmise Relations between Tests

24 1/0O functions for bases on items

24.1 openi _basis

NAME

openi_basis — Open a basisfile for reading

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern FILE *openi _basis

(

const char *fil enange,
int *qg_size,
int *b_size

),

DESCRIPTION

Open a basisfile for reading.

24.2 openo_basi s

NAME

openo_basis — Open a basisfile for writing

SYNOPSIS

#i ncl ude <srbi-space-io. h>

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

127

24 1/0 functions for bases on items

extern FILE *openo_basis

(
const char *fil enange,
int gq_size,
int b_size

),

DESCRIPTION

Open a basisfile for writing.

24.3 rd_basis

NAME

rd_basis — Read a complete basisfile.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern basis *rd_basis(const char *fil enane);

PARAMETERS

const char *filename
Name of basisfile.

DESCRIPTION

Read a complete basisfile.

24.4 read basis_el enent

NAME

read_basis_element — For the basis files we need topic specific reading routines,

128 Surmise Relations between Tests

245 w _basis

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern int read_basis_el enent

(
FI LE *in,
bitset m ni mal,
bi t set nonm ni nal ,
int g_size
)

DESCRIPTION

l.e. Functions to determine whether a set is minimal for an item or not. The result is
just an error code.
245 wr _basis

NAME

wr_basis — Write a complete basisfile.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern int w_basis

(
const char *fil enange,
basis *b

)

PARAMETERS

const char *filename
Name of basisfile.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 129

24 1/0 functions for bases on items

basis *b
Pointer to basis structure.
DESCRIPTION

Write a complete basisfile.

246 wite basis el enent

NAME

write_basis_element — Similar for writing

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern int wite_basis_el enent

(
FI LE *out,

bi tset m ni mal,
bi t set nonm ni mal ,
int g_size

),

DESCRIPTION

Similar for writing.

130

Surmise Relations between Tests

25 Basic I/O functions

25.1 read_int

NAME

read_int — Read an integer value from binary stream with endian corrections.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

int read_int

(
FILE *f,

structtype endi an
);
PARAMETERS

FILE *f
File to read from.

structtype endian
Do we have to change endian?.

DESCRIPTION

Read an integer value from binary stream with endian corrections.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

131

25 Basic I/0 functions

25.2 read_bb

NAME

read_bb — Read a bitset_basis value from binary stream with endian corrections.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

bit set _basi s read_bb

(
FILE *f,

structtype endi an

PARAMETERS

FILE *f
File to read from.

structtype endian
Do we have to change endian?.

DESCRIPTION

Read a bitset_basis value from binary stream with endian corrections.

25.3 a read state

NAME

a_read_state — Read a state from an ASCII file.
SYNOPSIS

#i ncl ude <srbi-space-io. h>

int a_read_state

132 Surmise Relations between Tests

254 b_read_state

FILE *f,

bi tset bs,

int g_size
)
PARAMETERS

FILE *f
File to read from.

bitset bs
Already allocated bitset.

int q_size
Size of set.

DESCRIPTION

Read a state from an ASCI| file.

RETURNS

Error code.

254 b read state
NAME

b_read_state — Read a state from a binary file.

SYNOPSIS

#i ncl ude <srbi-space-io. h>

int b_read_state

(
FILE *f,

bi t set bs,

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

133

25 Basic I/0 functions

int g_size,
structtype endi an
);
PARAMETERS

FILE *f
File to read from.

bitset bs
Already allocated bitset.

int q_size
Size of set.

structtype endian

Do we have to change endian?.

DESCRIPTION

Read a state from a binary file.

RETURNS

Error code.

134

Surmise Relations between Tests

26 Not yet really in order within
documentation

26.1 read patterns_el enent

NAME

read_patterns_element — For the files with patterns we need topic specific reading
routines,

SYNOPSIS
#i ncl ude <srbi-space-io. h>

extern int read_patterns_el enent
(

FI LE *in,

bi tset sol ved,

bi t set unanswer ed,

int g_size

DESCRIPTION

l.e. Functions to determine whether an item was not solved correctly or not answered.
The result is just an error code.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 135

26 Not yet really in order within documentation

26.2 wite_patterns_el enent
NAME

write_patterns_element — Similar for writing

SYNOPSIS

#i ncl ude <srbi-space-io. h>

extern int wite_patterns_el enent

(
FI LE *out,
bi tset sol ved,
bi t set unanswer ed,
int g_size
),

DESCRIPTION

Similar for writing.

26.3 read item.info

NAME

read_item_info — Functions for reading item- and line- infos from a file
SYNOPSIS

#i ncl ude <srbi-space-io. h>

long read_item.info

(
FILE *f,
int **info,
int q,
char *buf
),

136 Surmise Relations between Tests

26.3 read _iteminfo

DESCRIPTION

Functions for reading item- and line- infos from a file.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 137

26 Not yet really in order within documentation

138 Surmise Relations between Tests

Appendix

Please note that documentation in the appendices A and B is not updated (semi-) au-
tomatically with the source (opposed to the previous manpages and to Appendix D). In
any case of contradiction, the manpages are probably more accurate and up—to-date.
Please note further that Appendix C is explicitly partially superseded by new devel-
opments and that it is included here only because these parts have not yet been newly
documented.

26 Not yet really in order within documentation

140 Surmise Relations between Tests

A Data structures

A.1 Bitsets

The sr bi - set . h file defines two data types for bitsets:

typedef unsigned int bitset basis;
typedef bitset _basis *bitset;

These data types simply serve to ensure an independency from the word size of the
hardware used.

A.2 Knowledge structures and surmise systems

A.2.1 Structure type

The type structtype is used to describe the type of a structure. Currently, there
exist seven different types: bases, knowledge spaces, knowledge structures, surmise
relations, data, disjoint partition, and partition': Thei nternal / fi | et ype. h header
file defines

typedef unsigned int structtype;
together with the following types:

#def i ne UNKNOWN
#defi ne BASI S
#defi ne SPACE
#defi ne STRUCTURE
#defi ne RELATI ON
#def i ne DATA
#def i ne DI SJ_PART
#def i ne PARTI TI ON

1The structtypes disjoint partition and partition are defined for potential use within the to-be—written
SRBT-Library.

~No o~ wNE O

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 141

A Data structures

Thus, it is possible to define new structure types, easily.

Note that the structype numbers must be limited to a maximal value of 254 due to
the use of structtype in the fil et ype encoding (cf. App. A.2.2). The value of
READ ERROR=255 is used as a virtual structure (and file) type, e.g. for non-existant
files.

A.2.2 Filetype

Files are specified by their contents and their encoding. The fi | et ype datatype is
defined as

typedef unsigned int filetype;

intheinternal /fil etype. hheader file.

Thefil etyp is to be regarded as a bitmask. The lower eight bits are reserved for
storing the content type by means of st ruct t ype codes (cf. App. A.2.1). The upper
bits describe the encoding. Currently, the following encoding parameters are defined:

#def i ne OLD_FORVAT 0x0100
#define BINARY_FILE 0x0200
#def i ne Bl G_ENDI AN 0x0400

Further encoding descriptors should be defined in as way to use the fi | et ype as a
bistmask.

A.2.3 Knowledge space

Knowledge spaces are represented by a st r uct containing the number of items and
the number of knowledge states and a matrix, internally represented as a vector, where
the knowledge states are stored.

typedef struct {

i nt q_si ze; /* Number of itenms */

i nt s_size; /* Number of states */

bitset basis *matri x; /* Binary data matrix */
} space;

A.2.4 Knowledge structure and data set

Knowledge structures and data (i. e. answer patterns) are in fact the same structures as
knowledge spaces. The are simply defined separately to facilitate clear distinctions in
the progress of programming.

142 Surmise Relations between Tests

A.2 Knowledge structures and surmise systems

typedef struct {

i nt g_si ze; /* Nunber of itens */
i nt s_size; /* Number of states */
bitset basis *matrix; /* Binary data matrix */

} structure;

typedef struct {

i nt q_si ze; /* Nunmber of itenms */
i nt d_size; /* Number of states */
bitset basis *matrix; /* Binary data matrix */
} data;
A.25 Basis

The basis structure is similar to the structures already introduced above. The matrix
containing the basis elements, however, is split up into two matices distinguishing
whether a basis element is minimal or not for a contained item.

typedef struct {

i nt q_si ze; /* Number of itenms */

i nt b_size; /* Number of states */

bitset basis *mininmal; /* Matrix of mininal items */

bi t set _basi s *nonmi ni mal ; /* Matrix of non-nminimal itens */
} basis;

A.2.6 Surmise Relation

Surmise relations can be stored as a quadratic matrix describing whether or not an item
i is a prerequisite for an item j. Since the size of this matrix is prespecified as the square
of the number of items, we can use a bytewise storage instead of a bitwise one. The
idea for this structure was developed based on the dep- mat r i x program. The choice
of char as basic type for mat ri x is only a question of memory usage. The cells of the
matrix contain’ \ 0’ or’\'1’ ,andnot’ 0’ and’ 1’ , respectively.

typedef struct {

i nt g_si ze; /* Nunber of itens */
char **matriXx; /* Matrix of relation */
} srbi;

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 143

A Data structures

144 Surmise Relations between Tests

B Additional man pages

This Annex contains additional manpages describing general principles which have
been written manually and have not been produced as an automatic excerpt from the
source code.

B.1 srbifile — SRBI File formats in the SRBT project

Last changed: 27 July 1999

B.1.1 Synopsis

#SRBT[version] [structtype] [encoding] [endian] [wordsize] [com
ment]

B.1.2 Description

This manpage describes the format and header of files for surmise relations between
items (SRBI). With the | i bsr bi library, the default file formats have changed by an
additional header line (also for binary files) containing all information necessary for
interpreting the file contents. The main corpus, however, keeps unchanged as described
in the basisfile (Sect. C.1, p. 151), patternfile (Sect. C.3, p. 153) , and spacefile (Sect. C.2,
p. 152) manpages.

There are some new filetypes now: The former patt er nfi | eisnow calleddat afi | e.
Theterm patt ernfi | eis now used for a filetype diffrentiating between un-answered
and falsely answered items. While the latter are encoded through a0’ (zero), the former
are encoded through an "X,

Additionally, the r el ati onfi | e was introduced as a completely new filetype. A
relationfil eisalways in ASCII format. After the format header and possible com-
ments (see below) there comes a line with the number of items followed by a quadratic

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 145

B Additional man pages

matrix with one row and column for each item. The cell at the i th row and j th column
contains a’1’ if item j is a prerequisite of item i and a 0’ otherwise.

B.1.3 Usage

#SRBT[version] [structtype] [encoding] [endian] [wordsize] [com
ment |

#SRBT This string at the very beginning of the first line of a file denotes that the file is
for use with the | i bsrbi orl i bsrbt libraries from the SRBT project.

version Version number of the file format.

structtype This string describes the type of the data contained in the file. Six struct-
types are currently supported in the SRBI library:
basi sfile
spacefile
structurefile
relationfile
datafile
patternfile

Since basisfiles and patternfiles are always stored as ASCII text files, the following,
optional file header fields are only valid for datafiles, spacefiles, and structurefiles.

encoding The encodi ng information specifies whether the data are stored in ASCI |
or in bi nary form.

endian The endi an information specifies (for binary files only) whether the storing
computer has a LI TTLE or a Bl Gendian processor. Default is Bl Gendian.

wordsize States are stored as a multiple of wor dsi ze bits. The default value is 32.

comment The possibility to specify a comment is primarily provided for use with the
ASCII files. The first line may contain a comment separated by a hash sign (#).
Subsequent lines beginning with a hash sign (#) may also contain comments. This
also holds if the first line does not contain a comment. Note that all comments
must be specified before starting the real data.

For binary files, the format header line and optional comments are closed by a NUL (i.e.
0x00) character.

146 Surmise Relations between Tests

B.2 srbtfile

B.1.4 Remarks

The new SRBI file format was developed in order to ensure that users do not mingle
different file type specifications. This used to become a major problems with users
having only little computer experience.

If SRBI files are created manually, one should provide as many header information
as possible.

Any tools should should be able also to read files in the old format. If a file of the
wrong type (in the new format) is passed to a program, it may either be rejected (with
an appropriate error message) or converted (optionally issuing an additional warning
that a file of wrong type was passed over).

B.1.5 Warning

Please note that the introductionary string #SRBT is used for sr bi fi | es, too.

B.1.6 Seealso

basisfile (Sect. C.1, p. 151), patternfile (Sect. C.3, p. 153) , srbtfile (Sect. B.2, p. 147) space-
file (Sect. C.2, p. 152)

B.2 srbtfile — SRBT File formats

Last changed: 5 May 1999

B.2.1 Synopsis

#SRBT[version] [structtype] [encoding] [endian] [wordsize] [com
ment]

B.2.2 Description

This manpage describes extensions of the SRBI file format srbifile (Sect. B.1, p. 145). The
main extension lies within the definition of additional content types.

B.2.3 Usage

#SRBT[version] [structtype] [encoding] [endian] [wordsize] [com
ment]

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 147

B Additional man pages

#SRBT This string at the very beginning of the first line of a file denotes that the file is
for use with the | i bsr bt orl i bsrbi libraries.

version Version number of the file format.

structtype This string describes the type of the data contained in the file. Seven struct-
type are currently supported:
basi sfile
spacefile
structurefile
relationfile

datafile
di sjointpartition
partition

Since basisfiles are always stored as ASCII text files, the following, optional file header
fields are only valid for patternfiles, spacefiles, and structurefiles. Currently, it has not
been decided which encodings will be valid for partitions.

encoding The encodi ng information specifies whether the data are stored in ASCI |
or in bi nary form.

endian The endi an information specifies (for binary files only) whether the storing
computer has a LI TTLE or a Bl Gendian processor. Default is Bl Gendian.

wordsize States are stored as a multiple of wor dsi ze bits. The default value is 32.
Specification of wor dsi ze requires a specification of endi an.

comment The possibility to specify a comment is primarily provided for use with
the ASCII files. The first line may contain a comment separated by a hash sign
(#). Subsequent lines beginning with a hash sign (#) may also contain comments.
Note that all comments must be specified before starting the real data.

For binary files, the format header line and optional comments are closed by a NUL (i.e.
0x00) character.
B.2.4 Remarks

The new SRBT file format was developed in order to ensure that users do not mingle
different file type specifications. This used to become a major problems with users
having only little computer experience.

148 Surmise Relations between Tests

B.2 srbtfile

If SRBT files are created manually, one should provide as many header information

as possible.

Any tools should should be able also to read files in the old format. If a file of the
wrong type (in the new format) is passed to a program, it may either be rejected (with
an appropriate error message) or converted (optionally issuing an additional warning
that a file of wrong type was passed over).

B.2.5 Seealso

basisfile (Sect. C.1, p. 151), patternfile (Sect. C.3, p. 153) , srbifile (Sect. B.1, p. 145) ,
spacefile (Sect. C.2, p. 152)

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 149

B Additional man pages

150 Surmise Relations between Tests

C Old formats

This Annex contains manpages for the file formats used with the old | i bkst library
and the knowledge space tools. They are included here since they are mentioned within

the manpages of App. B. The patternfile described below corresponds to the datafiles !!
in the SRBI library.

C.1 basisfile — Format of basisfiles (v1.0)

Last changed: 11 July 1996

C.1.1 Description

A basi sfil e is an ASCII file describing the basis of a knowledge space. It has the
following format:

The first line contains the number of items in the knowledge domain.
The second line contains the number of basis elements.

The following lines contain the basis elements building a matrix where the columns
describe the items and the rowsdescribe the basis elements. In each cell of this matrix
there is a ’0’ if the basis element does not contain the item, a ’1’ if it is a clause for the
item and a ’2’ otherwise.

For any set of knowledge states, a basis according to this specification can be com-
puted with the basis (1K) program.

C.1.2 Version information

This manpage describes version v1.0 of the basisfile format. The format changes in v2.0
by additional format and meta information header lines (see srbifile (Sect. B.1, p. 145)).

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 151

C Old formats

C.1.3 Seealso

basis (1K), patternfile (Sect. C.3, p. 153) , spacefile (Sect. C.2, p. 152) , srbifile (Sect. B.1,
p. 145)

C.2 spacefile — Format of spacefiles (v1.0)

Last changed: 04 June 1996

C.2.1 Description

There are two different possibilities to store a spacefi | e — as an ASCII file or as a
binary file. Both types describe knowledge spaces in a very similar manner:

ASCII file format

The first line contains the number of items in the knowledge domain. The second line
contains the number of knowledge states.

The following lines contain the knowledge states building a matrix where the columns
describe the items and the rows describe the knowledge states. In each cell of this ma-
trix there is a ’1’ if the knowledge state does contain the item, and a 0’ otherwise.

Binary file format

The file contains a sequence of | ong i nt eger numbers. The first two numbers give

the number of items and the number of knowledge states. The following | ong i nt e-

ger s build bitsets, one per knowledge state. A bitset consists of as many | ong i nt e-

ger s as are needed to represent the item set. This number of | ong i nt eger s needed
canbecomputedas(ltenNo + BitsPerLong - 1) / BitsPerLongwhereBitsPer-
Long is the machine specific number of bits used to storeal ong i nt eger number.

C.2.2 Warning

Using a binary spacef i | e on different hardware platforms may produce unexpected
results since there may be different byte orders and therefore different bit orders.

152 Surmise Relations between Tests

C.3 patternfile

C.2.3 \ersion information

This manpage describes version v1.0 of the basisfile format. The format changes in v2.0
by additional format and meta information header lines (see srbifile (Sect. B.1, p. 145)).

C.2.4 Seealso

basisfile (Sect. C.1, p. 151), patternfile (Sect. C.3, p. 153) , srbifile (Sect. B.1, p. 145)

C.3 patternfile — Format of answer pattern files (v1.0)

Last changed: 04 June 1996

C.3.1 Description

Answer pattern files have the same format as knowledge space files. There are two
different possibilities to store a patternfil e — as an ASCII file or as a binary file.
Both types describe knowledge spaces in a very similar manner:

ASCII file format

The first line contains the number of items in the knowledge domain. The second line
contains the number of answer patterns.

The following lines contain the knowledge states building a matrix where the columns
describe the items and the rows describe the answer patterns. In each cell of this matrix
there is a '1’ if the answer pattern does contain the item, and a ’0’ otherwise.

Binary file format

The file contains a sequence of | ong i nt eger numbers. The first two numbers give

the number of items and the number of knowledge states. The following | ong i nt e-

ger s build bitsets, one per answer pattern. A bitset consists of as many | ong i nt e-

ger s as are needed to represent the item set. This number of | ong i nt eger s needed
canbecomputedas(ltenNo + BitsPerLong - 1) / BitsPerLongwhereBitsPer -
Long is the machine specific number of bits used to storeal ong i nt eger number.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 153

C Old formats

C.3.2 Warning

Using a binary patternfil e on different hardware platforms may produce unex-
pected results since there may be different byte orders and therefore different bit orders.
C.3.3 Version information

This manpage describes version v1.0 of the basisfile format. The format changes in v2.0
by additional format and meta information header lines (see srbifile (Sect. B.1, p. 145)).
C.3.4 Seealso

basisfile (Sect. C.1, p. 151), spacefile (Sect. C.2, p. 152) , srbifile (Sect. B.1, p. 145)

154 Surmise Relations between Tests

D Interfaces — C header files

This appendix contains — as a final reference — the C header files which build the in-
terface between the | i bsr bi library and the programmer applying and extendingthe

library.

D.1 srbi-set.h

/+« srbi—set.h — functions and datatypes for work with
/+« This library was developed within the Project

x Relations Between Tests " (SRBT) at the Department
x Psychology , University of Graz, Austria . It

x based on an older library developed at the

x of Mathematical and Social Psychology , University
x Technology , Braunschweig , Germany .

*

* (C) 1995, 1998 Cord Hockemeyer (CHockemeyer@acm .
*

®/
#ifndef SRBI SET H INCLUDED
#define _SRBI_SET H_ INCLUDED

#ifdef __ cplusplus
extern "C" {
#endif

/%

x The following line is machine dependent .
®/

typedef unsigned int bitset_basis;

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

155

D Interfaces — C header files

typedef bitset_basis x bitset;

#define BITS_PER_BB 32L /+x Bits wused for a integer -

/% Should be a power of 2 *x [
#define LD _BPB 5L /«% Binary logarithm of BPB * x|
#define BPB_Ml1 (BITS_PER_BB — 1L)

/% Should be a binary 11...11 %=/
#define BYTES_PER_BB (sizeof (bitset_basis))

% *
xx*% Functions creating and deleting extended bitsets

Y

/«+ Create a new and empty bitset =x/
extern bitset new_bitset
(int set_size /% Size of the set to be created x/

);

/I« Delete a bitset and return storage to the system =x/
extern void delete_bitset
(bitset a /+ Bitset to be deleted e/

);

/+ Make a copy of a bitset . New memory is allocated . =/
extern bitset copy_bitset
(bitset orig, /+ Original bitset x/
int set _size /x Size of the bitset /

);

/«+ Copy a bitset into another bitset =/
extern int set bitset

(bitset copy, /+ Destination bitset x/
bitset orig, /+ Original bitset */
int set_size [+ Size of the bitset =x/

156 Surmise Relations between Tests

D.1 srbi-set.h

);

/« Create a new bitset with randomly selected elements .
x This function wuses stdlib s rand () routine . Therefore ,
x it can be influenced through stdlib s srand () routine .

*/
extern bitset random_set

(int set_size /s Size of the bitset */
)i
[* %
xx%x | /O functions
* % %

xx% The % read ()— functions allocate the memory wused for their
k%% results .

* % [

#include <stdio.h>

/+ Read a bitset from an ASCII file .
New memory is allocated . */
extern bitset ascii_read (FILE xin, int set_size);

/+ Write a bitset to an ASCII file . %/
extern int ascii_write (FILE xout, bitset a, int set_size);

/+ Read a bitset from an binary file .
New memory is allocated . */
extern bitset bin_read (FILE xin, int set_size);

/+ Write a bitset to an binary file . x/
extern int bin_write (FILE xout, bitset a, int set_size);

[x %
xx% Functions for the connection of extended bitsets

*/

/«+ Compute the intersection of two bitsets with a function =x/
extern bitset section (bitset a, bitset b, int set_size);

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 157

D Interfaces — C header files

/« Compute the wunion of two bitsets with a function =x/
extern bitset set_union(bitset a, bitset b, int set_size);

/+ Compute the set difference of two bitsets with a function =«/
extern bitset set_diff(bitset a, bitset b, int set_size);

/+ Compute the symmetrical set difference of two bitsets with a function
extern bitset symm_diff(bitset a, bitset b, int set_size);

/+ Compute the intersection of two bitsets with a procedure =/
extern void comp_section (bitset result, bitset a,
bitset b, int set_size);

/+ Compute the wunion of two bitsets with a procedure =x/
extern void comp_union(bitset result, bitset a,
bitset b, int set_size);
/+ Compute the set difference of two bitsets with a procedure =x/

extern void comp_set_diff (bitset result, bitset a,
bitset b, int set_size);

/+ Compute the symmetrical set difference of two bitsets with a procedure
extern void comp_symm_diff(bitset result, bitset a,
bitset b, int set_size);

/+ Compute the accumulated intersection of two bitsets =/
extern void acc_section (bitset result, bitset op, int set_size);

/+ Compute the accumulated wunion of two bitsets =x/
extern void acc_union(bitset result, bitset op, int set_size);

/+ Compute the accumulated set difference of two bitsets =/
extern void acc_set _diff (bitset result, bitset op, int set_size);

/+ Compute the accumulated symmetrical set difference of two bitsets =/
extern void acc_symm_diff(bitset result, bitset op, int set_size);

158 Surmise Relations between Tests

D.1

srbi-set.h

[% *

xx*% Functions to extend /reduce extended bitsets

Y

/+ Add an item to a bitset =/

void set_incl (int item, bitset a, int set_size);

/+ Delete an item from a bitset x/

void set_excl (int item, bitset a, int set_size);

/« Determine the complement of a bitset =«/

extern bitset complement(bitset orig,
[% *

x¥x Predicates for extended bitsets

* % [

[+ Test if a bitset contains an item

int set_size);

*/

extern int is_element(int item, bitset a, int set_size);

/I Test if a set is empty =/

extern int emptyset(bitset a, int set_size);

/[« Test if two subsets are equal =/
extern int equal (bitset a, bitset b,

int set_size);

[+ Test if a bitset is a subset of another =/

extern int subset(bitset a, bitset b,

int set_size);

/+« Test if a bitset 1is subset of or equal to another =/

extern int subseteq(bitset a, bitset

[% *
xx% Properties of extended bitsets

* % [

b, int set_size);

/«+ Determine the cardinality , i.e. the number of elements

of

a bitset

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

159

%/

D Interfaces — C header files

extern int cardinality (bitset a, int set_size);

/« Determine the size of the symmetrical set difference of two bitsets
extern int symm_diff_size(bitset a, bitset b, int set_size);

/« Determine the size of the ordinary set difference of two bitsets =x/
extern int set_diff_size (bitset a, bitset b, int set_size);

/+ Determine the size of the intersection of two bitsets =/
extern int section_size (bitset a, bitset b, int set_size);

/+ Determine the size of the wunion of two bitsets */
extern int union_size(bitset a, bitset b, int set _size);

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

[% %
xx*% Some wuseful macros for determining bitpositions ,
x*%x Dbitset sizes etc.

* k %

xx% word_no (i) is the number of words needed to store i bits .
xx*% word_cnt (i) ist the number of the word where bit i 1is stored .
xx% bit_pos (i) is the bitposition of bit i in bitset [wordcnt (i)].
xx% bit_mask (i) is the bitmask to set/test /... bit i.

* % [

#define word no(i) (((i1) + BPB_M1) >> LD_BPB)
#define word_cnt(i) ((i) >> LD_BPB)

#define bit_pos(i) ((i) & BPB_M1)

#define bit_mask (i) (1L << bit_pos(i))

#ifdef __cplusplus

160 Surmise Relations between Tests

D.2 srbi-space.h

}
#endif

#endif
D.2 srbi-space.h

/+« srbi —space .h — functions and datatypes for work with knowlege spaces =/
/+« This library was developed within the Project "Surmise

x Relations Between Tests " (SRBT) at the Department of

x Psychology , University of Graz, Austria . Partially it

x is based on an older library developed at the Section

x of Mathematical and Social Psychology , University of

* Technology , Braunschweig , Germany .

*

* (C) 1995, 1998 Cord Hockemeyer (CHockemeyer@acm . org)

*
~

#ifndef _SRBI_SPACE_H_INCLUDED
#define _SRBI_SPACE_H_INCLUDED _

#include <stdio.h>
#include <srbi—-set.h>
#include <filetype .h>

#ifdef __cplusplus

extern "C" {
#endif

typedef struct {

int g_size; /% Number of items x/

int s_size; /+ Number of states =/

bitset_basis x matrix; /+ Binary data matrix =/

int «x item_info ; /+ Information numbers for each item =/

int xx line_info ; [+ Information numbers for each line %/
} space;

typedef struct {

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 161

D Interfaces — C header files

int g_size;
int Ss_size;
bitset_basis x matrix;
int «x item_info;
int «x line_info ;

} structure;

typedef struct {
int g_size;
int b _size;
bitset _basis x minimal;

bitset _basis xnonminimal ;

int «x item_info ;

int *x line_info ;

int ordered;
} basis;

typedef struct {

int q_size;
char xxmatrix ;
int «x item_info;
} srbi;
typedef struct {
int g_size;
int d_size;
bitset_basis x matrix;
int «x item_info;
int «x line_info ;
} data;

typedef struct {
int g_size;
int p_size;
bitset_basis *solved;

bitset_basis xun_answered;

int xx
int xx

item_info;
line_info ;

/ *

[%

/ *
[%
/ *

/ *
[%
[*
[*
[*
[%
[*

[%
[*
[%

/ *

[%

/ *
[%
[%

[%
[%
[%
[%
[%
[%

Number of items x/

Number of states =/

Binary data matrix =/

Information numbers for each item %/
Information numbers for each line %/
Number of items x/

Number of states =/

Matrix of minimal items %/

Matrix of non—minimal items =x/
Information numbers for each item %/
Information numbers for each line %/
Is this basis ordered by size ? %/
Number of items =/

Matrix of vrelation =/

Information numbers for each item %/
Number of items x/

Number of states =/

Binary data matrix =/

Information numbers for each item %/
Information numbers for each line %/
Number of items x/

Number of patterns «/

Matrix of solved items =«/

Matrix of un—answered items =/
Identification number(s) for each item x/
Identification number(s) for each patter;

162

Surmise Relations between Tests

D.2 srbi-space.h

} patterns;

typedef struct {

int g_size; /+ Number of items x/

char matrix ; /+ Matrix of relation =/

int «x item_info ; /+ Information numbers for each item =/
} ihypoth;
I/« load a basis from a file

x This function loads a basis from a file . It determines

x automatically which type of data is stored in the file

x and performs a squeeze operation on the data if necessary .
x Returns : Pointer to resulting basis .

®/
basis * load_basis (

const char filename [] /+ Name of the file to be loaded =x/
/+ load a space from a file

x This function loads a space from a file . It determines

x automatically which type of data is stored in the file

x and performs a constr operation on the data if necessary .
x Returns : Pointer to resulting space.

*/
space xload_space (

const char filename [] /+ Name of the file to be loaded x/
);

/+ load a structure from a file
x* This function loads a structure from a file .
x Returns : Pointer to resulting structure .

®/
structure * load_structure (

const char filename [] /+ Name of the file to be loaded =x/
)

/+ load a data set from a file
x* This function loads a data set from a file .
* Returns : Pointer to resulting data set.

®/

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 163

D Interfaces — C header files

data x load_data (
const char filename [] /+ Name of the file to be loaded =x/

);

/+ load a surmise relation from a file
* This function loads a surmise relation from a file .
x Returns : Pointer to resulting surmise relation .
®/
srbi « load_srbi (
const char filename [] /+ Name of the file to be loaded =x/

);

[+ write a basis to a file
This function writes a basis to a file wusing the new
basisfile format .
Returns : Error code .

®/
int save_basis (
basis xb, /+ Basis to be stored x/
filetype mode, /+ Format to be used x/
const char filename [] /+ Name of the file to be saved =/

/+ write a knowledge space to a file
This function writes a knowledge space to a file using
the new spacefile format.

x Returns : Error code.

*/
int save_space (
space *s, /+ Space to be stored =/
filetype mode, /+ Format to be wused */
const char filename [] /% Name of the file to be saved =/

);

/I« write a knowledge structure to a file
This function writes a knowledge structure to a file using
the new structurefile format.
Returns : Error code .

*/

164 Surmise Relations between Tests

D.2 srbi-space.h

int save_structure (

structure xs, [+ Structure to be stored =x/
filetype mode, /+ Format to be used x/
const char filename [] /+ Name of the file to be saved =/

/+ write a data set to a file

x This function writes a data set to a file wusing
x the new datafile format.

* Returns : Error code.

*/
int save_data(
data *s, /+ Data to be stored x/
filetype mode, /+ Format to be used x/
const char filename [] /+ Name of the file to be saved =/

/+ write a surmise relation to a file

x This function writes a surmise relation to a file using
x* the new relationfile format.

* Returns : Error code .

®/

int save_srbi (

srbi *r, /+* Surmise relation to be stored =/
const char filename [] /% Name of the file to be saved =/

[+ write a surmise relation as a matrix

* This function writes the matrix of a surmise relation to a
x stream . No header information are written .

* Returns : Error code .

*/

int write_srbi (

FILE *f, /* FILE to write into =/
srbi *xm I+ Matrix to be written =/

);

/I« Allocate memory for a knowledge space . */

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 165

D Interfaces — C header files

extern space xnew_space(int q_size, /= Number of items x/
int s_size [+ Number of states =/

);

/+ Return memory used by a space to the system . =/
extern void free_space (space *xxS);

/+ Make a copy of an existing knowledge space . */
extern space *copy_space(space * orig);

/+ Copy a single knowledge state from a knowledge space .
x* New memory is allocated .

*/
extern bitset copy_state(
space xS, /+ Space from which the state is to be copied =x/

int position /s Index of the state to be copied =*/

);

/+ Get a single knowledge state from a knowledge space .
* No new memory is allocated .

*/
extern bitset get_state (
space xS, /+ Space from which the state is to be copied =x/

int position /s Index of the state to be copied =x/

);

/+ Set a knowledge state within a knowledge space . x/
extern int set_state (

Space xS, /« Knowledge space */
int position, /% Index of the state to be set =/

bitset b /+ New value of the state x/

);

/« Allocate memory for a knowledge structure . x/
extern structure x new_structure (

int g_size, /+ Number of items =x/

int s_size [+ Number of states x/

166 Surmise Relations between Tests

D.2 srbi-space.h

);

/+ Return memory used by a structure to the system . x/
extern void free_structure (structure *x5s);

/+ Make a copy of an existing knowledge structure . */
extern structure x copy_structure (structure xorig);

/« Allocate memory for a data set . =/
extern data xnew_data(int q_size, /+ Number of items x/
int s_size /+ Number of patterns =/

);

/+ Return memory used by a data set to the system . x/
extern void free_data(data *xx5s);

/+ Create a random data set . AIll subsets of items are equally
probable . Repetitions are possible . */
extern data xrandom_data(int q_size, /+ Number of items x/

int s_size [+ Number of patterns x/
)i

/+ Make a copy of an existing data set . =/
extern data * copy_data(data * orig);

/« Copy a single answer pattern from a data set.
x New memory is allocated .

®/
bitset copy_pattern(
data s, /+ Data set from which the answer pattern is to be copied =/

int position /x Index of the answer pattern to be copied =/

);

/+« Get a single answer pattern from a data set.
x No new memory is allocated .

®/
extern bitset get_pattern(

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 167

D Interfaces — C header files

data *d, /+ Data set from which the answer pattern is to be
int position /x Index of the answer pattern to be copied */

);

/+ Set a answer pattern within a data set space . %/
extern int set_pattern(

data =d, I+« Data set */
int position, /+ Index of the answer pattern to be set =/

bitset b /* New value of the answer pattern /]

);

/« Allocate memory for a basis . %/
extern basis xnew_basis(int q_size, /+ Number of items =/
int b_size /+ Number of clauses =/

);

/+ Return memory used by a basis to the system . %/
extern void free_basis (basis xxb);

/+ Make a copy of an existing basis . =/
extern basis xcopy_basis(basis xorig);

/« Allocate memory for a surmise relation . x/
extern srbi xnew_srbi(int q_size); /+ Number of items =x/

/+ Return memory used by a surmise relation =/
extern void free_srbi (srbi xxr);

I/« close a basis wunder wunion
This function computes the closure wunder wunion of the basis
specified . Currently , Dowling’s (1993) algorithm is wused.
Returns : Pointer to resulting knowledge space.

x/

space x constr_basis(

basis *b /+ Basis to be closed =/

168 Surmise Relations between Tests

copied

D.2 srbi-space.h

/I« close a structure under wunion

x This function computes the closure wunder wunion of the structure
x specified . Currently , Dowling’s (1993) algorithm is wused.

x Returns : Pointer to resulting knowledge space.

*/
space * constr_structure (
structure xS /+ Structure to be closed =/
/« close a basis wunder wunion wusing the Ganter algorithm
x This function takes a basis and computes its closure under
x union wusing the algorithm developed by Ganter . The result
x is directly stored into a file .
x Returns : Number of states of the resulting knowledge space.
* Negative in case of an error .
x Warning : Not yet implemented !
®/
int ganter_basis (
basis xb, /+ Basis to be closed x/
filetype mode, I+ File format %/
const char filename[] /+ Filename for resulting space */
/+ close a structure wunder union wusing the Ganter algorithm
x This function takes a structure and computes its <closure wunder
x union wusing the algorithm developed by Ganter . The result
x is directly stored into a file .
x Returns : Number of states of the resulting knowledge space.
* Negative in case of an error .
x Warning : Not yet implemented !
®/
int ganter_structure (
structure xs, /+ Structure to be closed */
filetype mode, I+ File format */
const char filename [] [+ Filename for resulting space x/

/+ determine basis of a structure
x This function computes the minimal elements of a given
x knowledge structure . The set of minimal elements is the

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 169

D Interfaces — C header files

x basis of the space which would be the result of closing
the structure wunder wunion .
Returns : Pointer to the resulting basis .

x/
basis * squeeze(

structure x5S /+ Knowledge structure to be squeezed =/
);
/+ determine SRBI matrix from a basis

+ This function takes a basis , checks whether it describes a
+ surmise relation , and stores it as a SRBI structure .

x returns pointer to the resulting SRBI structure . NULL if the
x structure cannot be generated , e.g. if the basis does not

x describe a surmise relation .

x/
srbi xdep_matrix(

basis *b /+ Basis describing the surmise relation «/
);

/+ Reduce a knowledge space to a subset of items =x/
extern space x mask_space(space xS, [+ Original space =/
bitset mask /s« Item set of reduced space =/

);

/+ Reduce a data set to a subset of items x/
extern data * mask_data(data xd, /+ Original data set =/
bitset mask /% Item set of reduced patterns =/

);

/+ Reduce a basis to a subset of items x/
extern basis x mask_basis(basis b, /x Original basis */
bitset mask /%« Item set of reduced basis =/

/+ Compute the size of a clause

*

x Clauses , i.e. knowledge states which are members of the basis,
x are partitioned into two subsets : the set of items for which

x the <clause is minimal and the set of items which are elements

x of the clause but for which the clause is not minimal . Therefore

170 Surmise Relations between Tests

D.2 srbi-space.h

x we have specific functions in the spacelib .

®/
int /% Return codes :
x >= 0 Size of the <clause
x —1 basis is NULL pointer
x —2 index > basis —>b_size
*/
clause_cardinality
(
basis *b, /* The basis where the clause is found in */
int index /+ The position of the clause in the basis =/
/« Determine a clause
x Clauses , i.e. knowledge states which are members of the basis,
x are partitioned into two subsets : the set of items for which
x the clause is minimal and the set of items which are elements
x* of the clause but for which the clause is not minimal . Therefore
x we have specific functions in the spacelib .
®/
extern bitset get_clause
(
basis b, /* The basis where the clause is found in =/
int index /+ The position of the clause in the basis =/
/+ Determine the set of states of a basis
*
x Allocate memory for a simplespace and fill it with the complete
x clauses which are given in partitioned form in the basis_struct
x structure .
®/

structure * clause_set(basis xb);

/+ Compute a wellgraded basis
x This fuction computes the basis of a wellgraded space which

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 171

D Interfaces — C header files

x IS a superset of the space described through the basis given
x as a parameter . Wellgradedness can not be reached through a
x closure operator since , for a non—wellgraded knowledge space,
* there does not exist a \emph{unique} smallest wellgraded

x knowledge space as a superset .

*

x Here , the decision 1is to partition basis elements causing

* non—wellgradedness into a \emph{prerequisite subset} and a
= \ emph {new items } subset . In the resulting wellgraded basis,
x each non—wellgraded element is substituted by the family

* of all sets of the form \emph{prerequisite subset + single
* new item }.

x/

basis * wellgrade (basis *b);

/I« select sequence of states wunder equal distribution
x This function selects from a knowledge space a sequence
x of knowledge states assuming equal distribution . This s
x to be wused as simulated data . Some noise (careless errors
x and lucky guesses) may be added via the mk_noisy () function .
*
x This function wuses stdlib s rand () routine . Therefore ,
x it can be influenced through stdlib s srand () routine .
*
* Returns : Pointer to the selected data.
®/
data x equal_sample (
structure xs, /+* Source structure of the sample */
int size /+ Size of the sample]

/+ add noise to a set of data

x This function adds noise, i.e. careless errors and lucky

x guesses to a data set . Noise is added according to the model
x developed by Falmagne and Doignon.

*

x This function wuses stdlib 's rand () routine . Therefore ,

x it can be influenced through stdlib s srand () routine .

*

172 Surmise Relations between Tests

D.3 srbi-util.h

x Returns : Pointer to noisy data.

®/
data * mk_noisy (
data *xd, /+ Original * clean ’ data set %/
int xbeta, /« Beta values in per thousand x/
int =xeta /+ Eta values in per thousand x/
)
#ifdef __cplusplus
}
#endif
#endif
D.3 srbi-util.h
/+« srbi—util .h — functions and variables for general wuse =x/
/+« This library was developed within the Project "Surmise
x Relations Between Tests " (SRBT) at the Department of
* Psychology , University of Graz, Austria . Partially it
* is based on an older library developed at the Section
x of Mathematical and Social Psychology , University of
* Technology , Braunschweig , Germany .
*
* (C) 1995, 1998 Cord Hockemeyer (CHockemeyer@acm . org)
*/
#ifndef _SRBI_UTIL H_INCLUDED_
#define _SRBI UTIL H INCLUDED
#ifdef _ cplusplus
extern "C" {
#endif
[*
Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 173

D Interfaces — C header files

x flag indicating verbosity mode

x The verbose flag indicates a verbosity mode.

®/

extern int verbose;

/ x

x flag indicating debug mode

x The verbose flag indicates a debugging mode.

®/

extern int debug;

[%

x Generating random numbers with larger domain.

x On many systems , the rand () function from stdlib

x generates only 15 bit integer numbers . In such cases
x random () should produce 30 bit integers .

*

x This function wuses stdlib s rand () function and, therefore
x can be influenced through stdlib s srand () function .
*/

extern long random();

/ x

x Generating random numbers with larger domain.

x On many systems , the rand () function from stdlib

x generates only 15 bit integer numbers . In such cases
x urandom () should produce 32 bit integers .

*

x This function wuses stdlib 's rand () function and, therefore ,
x can be influenced through stdlib 's srand () function .
*/

extern unsigned

#ifdef

}
#endif

#endif

int urandom();

__cplusplus

174

Surmise Relations between Tests

D.4 filetype.h

D.4 filetype.h

/I« filetype .h — Types of SRBI and SRBT files

x This library was developed within the Project "Surmise
x Relations Between Tests " (SRBT) at the Department of
x Psychology , University of Graz, Austria . Partially it
x is based on an older library developed at the Section
x of Mathematical and Social Psychology , University of
x Technology , Braunschweig , Germany .

*

*

(C) 1998 Cord Hockemeyer (CHockemeyer@acm . org)
x/

#ifndef _INTERNAL_FILETYPE_H_INCLUDED_
#define _INTERNAL_FILETYPE_H_INCLUDED_

#include <stdio.h>
#include <srbi—set.h>

#ifdef __cplusplus
extern "C" {
#endif

typedef unsigned int structtype;

/+« structtypes must be less than 256! x/
#define UNKNOWN
#define BASIS
#define SPACE
#define STRUCTURE
#define RELATION
#define DATA

#define DISIPARTITION
#define PARTITION
#define PATTERNS
#define TESTRELATION 9
#define | HYPOTHESIS 10

oO~NO o~ WNPEFR O

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 175

D Interfaces — C header files

/+« Strings describing the wvarious structure types . x/
extern const char *structtype_names|[];

/x Bitmask to extract structtype from filetype =/
#define STRUCTTYPE 0x00ff

typedef unsigned int filetype;

/I« Filetype attributes as bitmasks between 0 x0100 and 0 x8000

x For each attribute , a bitmask and all possible wvalues are
x defined . Excluding attributes may share bits .
®/

#define FORMAT MASK 0x0100
#define NEW FORMAT 0x0000
#define OLD FORMAT 0x0100

#define B_ORDER MASK 0x0200
#define B UNORDERED 0x0000
#define B _ORDERED 0x0200

#define STOR_MASK 0x0200
#define ASCII_FILE 0x0000
#define BINARY_FILE 0x0200

#define ENDIAN_MASK 0x0400
#define LITTLE_ENDIAN 0 x0000
#define BIG_ENDIAN 0x0400

[*
* Checks for the type of an SRBI/SRBT file .
x type_of_file () opens a file and tries to find out which type
x of SRBI/SRBT data are stored in the file . It is <closed
x afterwards , again .
x Returns : Type of file including type of contents and
* additional attributes .
* Filetypes <contain in the lower eight bits the
* structtype , in the next eight bits there are

176 Surmise Relations between Tests

D.5 error-list.h

* format specifications , and the next 16 bits

* contain the wordsize for binary files .

*

x Warning :

x Old—style binary files are always identified as data files
* since we can assume none of the stricter conditions to be
x« fulfilled for knowledge structures or knowledge spaces .
*/

extern filetype type_of_file(
const char xfilename /+ Name of file to be tested =/

);

/+« String containing SRBT mark and version .
* Version 2.0 marks the new format header lines .
* Version 1.0 is to be used for the *‘“old KST format.

x/
extern const char srbt_version [];

#ifdef _ cplusplus

}
#endif

#endif
D.5 error-list.h

[% %

+++* ERRORS.H

* k %

%% Definition of error codes .
* % %

xxx We define this here global to use identical

Y

#ifndef ERRORLIST _H_INCLUDED
#define _ERRORLIST H_INCLUDED_

#ifdef __cplusplus
extern "C" {
#endif

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 177

D Interfaces — C header files

#define NO_ERROR 0
#define MEMORY_ERROR 1
#define OPEN_ERROR 11
#define READ_ERROR 12
#define WRITE_ERROR 13
#define FORMAT_ERROR 21
#define INCOMP_ERROR 22

#define UDEFD PARAM ERROR 23
#define UDEFD_TOKEN ERROR 24
#define ILLEGAL PARAM_ERROR 25

#define PARAM ERROR 31
#define NO_PARAM ERROR 32
#define TOO PARAM ERROR 33
#define PROB_ERROR 101
#define NULL ERROR 201
#define NOPEN_ERROR 202

#define SCAN_PARAM ERROR 203

#define NOT_IMPL_ERROR 1001
#define INTERNAL_ERROR 1002
#define SETSIZE_ERROR 1003
#define SUBSCRIPT_ERROR 1004

#ifdef _ cplusplus

}

#endif

#endif

D.6 internal/srbi-space-io.h

/+« srbi —space —io.h — Internal

[% x

/% %

[% x
/% %

[% %

[% x
[% %
[% x
[% x

[% x

[% %
[% x

[% %

[% %

[% %
[% x

[% x

[% %
[% %
[% %

[% %

Things work correctly x|
enough memory * %/
Unable to open file * % [
Unable to read * %/
Unable to write *x [
has wrong format *x [

incompatible files #x/

Parameter not defined ®% [

not defined w0k [

Illegal Param . specified *x/

cmd line param . x %/

enough param . given x|
many param . given x %/

Probabilities don’t sum * %/
Access to NULL pointer x %/

Access to non-—open file ®k [
Unscanned parameter file xx/

yet implemented * % [
Internal program error xx [
Exceeding set size *x [
Exceeding array range xx

IO functions for knowledge spaces

178

Surmise Relations between Tests

D.6 internal/srbi-space-io.h

* k %
xx*% Internal headerfile for the |libsrbi .a library .
* % %

xx% This headerfile declares 10 functions for internal use only.

® % /[
#ifndef _SRBI SPACE_I0_H INCLUDED
#define _SRBI SPACE_IO_H_INCLUDED _

#include <stdio . h>
#include <srbi—set.h>
#include <srbi—space.h>
#include <filetype .h>

#ifdef __ cplusplus

extern "C" {
#endif

[*

xx Functions for opening files . The function names have the form

xx XopenY_ZZZZ where X is an 'a’ or a b’ determining whether
xx file to be opened has ASCIlI or binary format, Y is an ’i

’ 3

the

or

x% an ' o for input or output (i.e. whether to read or to write
xx the data) and ZZZZ describes the kind of data, i.e. whether
*x to read/write a knowledge space or a basis .

* %

xx The functions wused to simply read states (i.e. sets) from
xx these files are defined in the Ilibset .a library .

* %

xx To close these files simply wuse the fclose () from standard
xx library .

*/

/+ Open a spacefile in ASCIlI format for reading =/
extern FILE x aopeni_space (const char xfilename,
int xq_size,
int xs_size);

/« Open a spacefile in binary format for reading =/
extern FILE = bopeni_space(const char x filename,
int xq_size,

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

179

D Interfaces — C header files

int xs_size);

/+ Open a spacefile in ASCIlI format for writing =x/
extern FILE % aopeno_space (const char x filename,
int g_size,
int s_size);

/« Open a spacefile in binary format for writing =/
extern FILE x bopeno_space(const char * filename,

int q_size,

int s_size);

/ x
xx Base files are always stored in ASCIlI format so far .
xx Therefore we need no identifier for the file format.

*/

/«+ Open a basisfile for reading =/

extern FILE x openi_basis(const char x filename,
int xq_size,
int xb_size);

/+ Open a basisfile for writing =/

extern FILE xopeno_basis(const char x filename,
int g_size,
int b_size);

[%

xx For the basis files we need topic specific reading routines,
xx i.e. functions to determine whether a set is minimal for an
x% item or not. The result is just an error code.

x/

extern int read_basis_element(FILE xin,
bitset minimal,
bitset nonminimal,
int q_size);

[%
xx Similar for writing

180 Surmise Relations between Tests

D.6 internal/srbi-space-io.h

x/

extern int write_basis_element (FILE = out,
bitset minimal,
bitset nonminimal,
int gq_size);

% *
xxx Here some functions for the wusage of knowledge spaces,

Y

/%

xx Again we start with 1/0 functions :

x/

/+ Read a complete knowledge space in ASCIlI format . x/

extern space xard_space(const char *filename);

/+ Read a complete knowledge space in binary format . =/
extern space xbrd_space (const char xfilename);

/I« Write a complete knowledge space in ASCII format . =/
extern int awr_space (

const char x filename, /+« Name of spacefile =/

space *S [+ Pointer to space structure x/

);

/+ Write a complete knowledge space in binary format . x/
extern int bwr_space(

const char x filename, /x Name of spacefile =/

space *S [/« Pointer to space structure =x/

);

/+ Read a complete basisfile . %/
extern basis xrd_basis(
const char x filename /x Name of basisfile x/

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 181

D Interfaces — C header files

);

[+ Write a
extern

complete
int wr_basis(

const char * filename, /=«

basisfile . %/

Name of basisfile =/

basis xb /+ Pointer to basis structure =/
[*
xx Additionally , some basic 10 functions
*/
/+ Read an integer value from binary stream with endian corrections . x/

int read_int(

FILE *f, /+ File to read from =x/
structtype endian /+ Do we have to change endian ? x/
)
/+ Read a bitset_basis value from binary stream with endian corrections
bitset _basis read_bb(
FILE *f, /+ File to read from =x/
structtype endian /+ Do we have to change endian ? x/
)
/%
x Read a state from an ASCII file .
x Returns : Error code.
*/
int a_read_state (
FILE x* f, [+ File to read from =«/
bitset bs, /+ Already allocated bitset x/
int g_size I+ Size of set =/
);
182 Surmise Relations between Tests

D.6 internal/srbi-space-io.h

[x
x Read a state from a binary file .
* Returns : Error code .

®/
int b_read_state (
FILE x* f, /+ File to read from =/
bitset bs, I+ Already allocated bitset «/
int g_size, [+ Size of set =/
structtype endian /+ Do we have to change endian ? %/
);
[*
xx For the files with patterns we need topic specific reading routines,
xx i.e. functions to determine whether an item was not solved <correctly
x+x answered . The result 1is just an error code .
*/
extern int read_patterns_element(FILE xin,
bitset solved,
bitset unanswered,
int q_size);
[%
xx Similar for writing
*/
extern int write_patterns_element (FILE x out,
bitset solved,
bitset unanswered,
int g_size);
[%
xx Functions for reading item — and line — infos from a file
*/
long read_item _info(FILEx f, intxx info, int q, charx buf);
long read_line_info (FILEx f, intxx info, int |, charx buf);
Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 183

or

not

D Interfaces — C header files

intxx copy_info(intxx orig, int number);

int write_item_info (FILEx f, intxx info, int number);
int write_line_info (FILEx f, intxx info, int number);
int set_info (intxx copy, intxx orig, int number);
#ifdef __ cplusplus

}

#endif

#endif

184 Surmise Relations between Tests

Bibliography

[c2man] c2man. C2man. Online available at ft p://ftp. research. canon. com
au/ pub/ c2man.

[1] Dowling, C. E. & Hockemeyer, C. (1995). Wissensdiagnose in der beruflichen Ausbil-
dung [Knowledge assessment in professional education]. (Technical report), Institut
far Psychologie, Technische Universitat Braunschweig, Germany.

[2] Knuth, D. E. (1982). The WEB system of structured documentation—uversion 1. Stanford,
CA, USA: Stanford University.

[3] Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97-111.

[4] Knuth, D. E. (1986). The TgXbook, (Vol. A) of Computers and Typesetting. Reading,
MA, USA: Addison-Wesley.

[5] Knuth, D. E. (1986). TeX: The program, (Vol. B) of Computers and Typesetting. Reading,
MA, USA: Addison-Wesley.

[6] Knuth, D. E. (1992). Literate programming. CSLI Lecture Notes Number 27. Stanford,
CA, USA: Stanford University Center for the Study of Language and Information.

[7] Knuth, D. E. & Levy, S. (1993). The CWEB system of structured documentation, version
3.0. Reading, MA, USA: Addison-Wesley.

[van Ammers and Kramer] van Ammers, E. W. & Kramer, M. R. The CLiP style of literate
programming. Online available from CTAN:/ web/clip/clip_styl e. ps. Version
4.074, 26-feb-93.

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000) 185

Bibliography

186 Surmise Relations between Tests

List of Manpages

a_read_state, 132
acc_section,53
acc_set diff,54
acc_symm di ff, 54
acc_uni on, 53
aopeni _space, 121
aopeno_space, 121
ard_space, 122
ascii _read,41
ascii_wite, 41
awr _space, 122

b read state, 133
bi n_read, 42

bin wite, 42
bopeni _space, 123
bopeno_space, 124
brd_space, 124
bw _space, 125

cardinality,61

cl ause_cardinality,103
cl ause_set, 102
conmp_section,49
conp_set _diff,50
conp_symm di ff, 51
conp_uni on, 49

conpl ement , 45
constr_basi s, 97
constr_structure,98

copy_basi s, 76
copy_bitset,34
copy_data, 77
copy_pattern,8l
copy_patterns,77
copy_space, 75
copy_state, 79
copy_structure, 76

dat a2patt erns, 104
debug, 25

del ete_bitset,34
dep_matri x, 101

enpt yset,57
equal , 58
equal _sanpl e, 111

free_basis,73
free data,74
free_patterns,75
free_space,73
free_srbi,75

free structure,74

gant er _basi s, 98
ganter_structure, 99
get _cl ause, 102

get _pattern,82

get _state,80

Internal Functions

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

187

LIST OF MANPAGES

a_read_state, 132

aopeni _space, 121

aopeno_space, 121

ard_space, 122

awr _space, 122

b read_state, 133

bopeni _space, 123

bopeno_space, 124

brd_space, 124

bwr _space, 125

openi _basi s, 127

openo_basi s, 127

rd_basis, 128

read basi s_el ement, 128

read_bb, 132

read_int,131

read_item. nfo,136

read_patterns_el enent, 135

wr _basi s, 129

write_basis_el enent, 130

wite patterns_el enent, 136
i s_elenent,57

| oad_basi s, 85

| oad_dat a, 87

| oad_patterns,88
| oad_space, 86

| oad_srbi,88

| oad_structure,86

mask basi s, 109
mask_dat a, 110
mask_space, 110
nk_noi sy, 112

new_basi s, 70
new_bit set, 33
new dat a, 71
new_patterns,72

new_space, 69
new_srbi,72
new_structure,70

openi _basi s,127
openo_basi s, 127

patt er ns2dat a, 104

random 27

random dat a, 78

random set, 33

rd_basi s, 128

read_basi s_el enent, 128
read_bb, 132

read_int,131

read_item. nfo,136
read_patterns_el enent, 135

save_basi s, 89
save_dat a, 92
save_patterns,93
save_space, 90
save_srbi,93
save_structure,91
section, 46
section_size, 62
set _bitset,38

set diff,b46

set _diff_size, 62
set excl,37

set _incl,b37

set _pattern,83
set _state,80

set _uni on,45
squeeze, 100
srbt_version,115
structtype_nanes, 115
subset, 58

188

Surmise Relations between Tests

LIST OF MANPAGES

subset eq, 59
symm di f f,47
symm di ff_size, 63

type_of _file, 116

uni on_si ze, 61
ur andom 27

ver bose, 25

wel | gr ade, 107

wr _basi s, 129
write_basis_el enent, 130
wite_patterns,94
wite_patterns_el enent, 136
write_srbi,94

Li bsr bi documentation (Cord Hockemeyer; August 30, 2000)

189

LIST OF MANPAGES

190 Surmise Relations between Tests

