
KST Tools User Manual

Cord Hockemeyer
Cornelia E. Dowling

Institut für Psychologie
Technische Universität Braunschweig

Germany

30 June 1996

Contents

I. Overview 1

1. Some Introductory Remarks 1

1.1. Availability . 1

1.2. Conventions Used in this Report . 2

2. Program List 2

2.1. Different Representations . 2

2.2. Working with Rules . 2

2.3. Informations . 2

2.4. Combining Different Knowledge Spaces 3

2.5. Comparing Different Knowledge Spaces 3

2.6. Changing Knowledge Spaces . 3

2.7. Creating special Knowledge Spaces . 3

2.8. Working with Surmise Relations . 4

2.9. Validation Using Student Data . 4

II. KST Specific Tools 5

3. basis 5

4. basis-union 6

5. constr 6

6. dep-pairs 7

7. distance 8

i

8. heights 10

9. mk-empty-space 11

10. select 12

11. sigma-distance 12

III. General Tools 14

12. count 14

13. permute 14

IV. File Formats 15

14. basisfile 15

15. patternfile 15

16. spacefile 16

ii

Part I.

Overview

1. Some Introductory Remarks

This report documents a number of programs mainly written by Cord Hockemeyer
during his time in the research group of Cornelia Dowling at the Department of Psy-
chology, University of Technology at Braunschweig, Germany. Many ideas have also
been contributed by other members of this group, namely by Katja Baumunk and
Rainer Kaluscha.

This documentation represents a snapshot of the set of programs and their documenta-
tion as Cord Hockemeyer and Rainer Kaluscha are moving from Braunschweig to Graz,
Austria. Cord Hockemeyer will continue maintaining tools and documentation there
(see also Section 1.1 on future availability of programs and documentation). Section 2
gives a short overview of all programs available. For a selected number of programs,
more complete documentation can be found in Part II of this document. Part III de-
scribes some minor tools applied by other programs, and part IV documents the file
formats used.

The work reported herein was financially supported through two project grants given
to Cornelia Dowling by the Ministry of Education in Luxemburg an by the Alexan-
der von Humboldt Foundation, and through a post–graduate fellowship given to Cord
Hockemeyer by the Government of the German state of Lower Saxony.

1.1. Availability

Since the maintainer of the described collection of tools, Cord Hockemeyer, moves to
Graz, the files will be downloadable from there. Please have a look at the URL http:
//wundt.kfunigraz.ac.at/hockemeyer/tools.html, or contact him by e–mail
at Cord.Hockemeyer@kfunigraz.ac.at.

Some programs of this collection make use of the libkst library1. This library can be
reached through the same address.

1A previous version in the form of three separate libraries libset, libspace, and libgeneral was
documented by Cornelia E. Dowling and Cord Hockemeyer (Wissensdiagnose in der beruflichen Ausbil-
dung [Knowledge assessment in professional education]. Technical report, Institut für Psychologie, Techni-
sche Universität Braunschweig, Germany, 1995).

1

1.2. Conventions Used in this Report

In Section 2, there is a note for each program stating the program language and — if
appropriate, i. e. in case of scripts — the names of other programs used. There are three
languages used: C, C++, and bash (the latter meaning shell scripts using the bash or the
ksh). The scripts may be not portable. For the shell scripts the C/C++ programs used
within which have been written especially for knowledge spaces are mentioned. Other
programs used in the scripts, however, which are part of the UNIX operating system
and its standard utilities have not been mentioned. Examples for the latter are sed, cut,
paste, [ef]grep, head, or tail.

For those programs documented in more detail in Parts II and III, the documentation is
kept in UNIX™ man page style since it is actually a pronted version of the respective
man page

2. Program List

2.1. Different Representations

� basis: Computes the basis of a knowledge structure. (C)

� constr: Constructs the knowledge space for a given basis. The format of the space
file (ASCII or binary) can be chosen via command line options. (C)

2.2. Working with Rules

Comment: Rules is used here in the sense of surmise systems.

� rule-cnt: Just count the rules rejected by a basis. (C, needs a lot of computing time if
you have items with many clauses)

2.3. Informations

� basis-print: Print a list of the basis elements as number lists with one element
per line. Items for which an element is minimal are marked with an underscore.
(C++, it is a good idea to postprocess the list for including it into e.g. TeX-sources)

� equivalence: Compute and print classes of equivalent items in a knowledge space
given by its basis. (C)

� heights: Compute for each item its height within a knowledge space defined as
the minimal size of its clauses. (C)

2

2.4. Combining Different Knowledge Spaces

� basis-union: Compute the basis of the union of two knowledge spaces given by
their bases. (bash, using the basis program mentioned above)

� basis-section: Computes the basis of the section of two knowledge spaces de-
scribed by their bases. (C)

2.5. Comparing Different Knowledge Spaces

� comp-rules: Compute several different coefficients concerning rules common to
two knowledge spaces. (bash, using the rule-cnt program mentioned above)

� sigma-distance: Compute for each item coefficients concerning their clause sets
in the surmise systems. (C)

2.6. Changing Knowledge Spaces

� s-closure: Compute the closure under intersection of a knowledge space (given
by its basis). The resulting spaces is also given by its basis. (bash, using the constr
and the basis programs mentioned above)

� red-basis: Reduce a basis to a subset of items. (bash, using the basis program men-
tioned above)

� select-cols: Extension of the red-basis program. Order of items in the destination
basis can be freely selected. Does not allow regions in the specification of the item
list. (bash, using the basis program mentioned above)

� permute-basis: Permute the columns of a basis according to a random permuta-
tion. (bash, using a small C-program called permute for randomly choosing a permuta-
tion)

� select: Select randomly a number of knowledge states from a given knowledge
space and store it in the format of a knowledge space. (C)

2.7. Creating special Knowledge Spaces

� diagonal-basis: Create a basis building a diagonal matrix, i.e. a basis representing
the knowledge space which contains all subsets of the item set. (bash, using a C-
program called count; should be rewritten in C for efficiency)

� mk-empty-space: Just the complement program to diagonal-basis. Write a space-
file which contains only the empty set and the complete item set as its knowledge
states. (C)

3

2.8. Working with Surmise Relations

� dep-matrix: Show a surmise relation as a matrix. (C, link to dep-pairs)

� dep-pairs: Show a surmise relation as a list of pairs. (C, behaving depending on its
name)

� dep-all: Show for each pair of items whether or not it is contained in the surmise
relation given. (C, link to dep-pairs)

� comp-s-closure-rules: Compute different coefficients concerning rules common
to two knowledge spaces which must be closed under intersection. (bash, using
the base-union, dep-pairs, and s-closure programs mentioned above)

2.9. Validation Using Student Data

� rule-errors: Compute for each pair in a surmise relation the number of students’
answer patterns which contradict the pair. (bash, using the dep-pairs program men-
tioned above)

� all-rule-errors: Create for a given basis and a set of answer patterns a table of all
pairs of different items describing whether or not the expert has accepted the pair
as member of the surmise relation and how many answer patterns contradict this
pair. (bash, using the dep-all program mentioned above)

� rule-error-table: Print a table which shows for each pair of different items how
many answer patterns in a datafile contradict this pair and, for a list of bases rep-
resenting surmise relations, whether or not the pair is an element of the surmise
relations.

� quad-table: Print for a set of answer patterns and for all 2-item-sets a table show-
ing the frequencies of the four possible 0-1-pairs of managing the items. Each
table is printed into an own file. (bash, using just a small utility called count which
prints the list of numbers from 1 to n)

� distance: Compute the frequency distribution for the different possible distances
between students’ answer patterns and the states of a knowledge space given in
binary format. This program was strongly influenced by a program named di.exe
which was originally written by Theo Held. In the meantime, it has been extended
to the computation of several measures on the invalidity of items and prerequisite
relationships. (C)

� clause-inv: This program computes a measure for the invalidity of item-clause
pairs in a given basis with respect to a specified data set of answer patterns. (C)

4

Part II.

KST Specific Tools

3. basis — Computing the basis of a knowledge structure

Last changed: 25 April 1996

Synopsis

basis [options] structurefile basisfile

Description

basis computes the basis of a knowledge structure. The structure may be stored in
a spacefile (Sect. 16) in either binary or ASCII format. The resulting basis is stored in
basisfile (Sect. 14) format. The elements of the basis are ordered by their size so it can
be used directly with the constr (Sect. 5) program.

Usage

basis [Options] structurefile basisfile

Options are:

-a|-ascii: Use ASCII format for structurefile (see spacefile, sect. 16).

-b|-binary: Use binary format for structurefile (see spacefile, sect. 16).

Only one of these options may be used.

See also

basisfile (Sect. 14) , spacefile (Sect. 16) , constr (Sect. 5)

5

4. basis-union — Computing the basis representing the union
of two knowledge spaces

Last changed: 19 April 1996

Synopsis

basis-union basis1 basis2 union

Description

basis-union computes the basis representing the union of two given knowledge
spaces. Both knowledge spaces are represented as bases (see basisfile, sect. 14).

In a first step, the original bases basis1 and basis2 are concatenated. In a second
step, then, the minimal elements of the knowledge structure resulting from the first
step are determined and stored in the file union. For this second step, the basis (5K)
program is used.

See also

spacefile (Sect. 16) , basisfile (Sect. 14) , basis (Sect. 3)

5. constr — Computing the closure under union

Last changed: 16 May 1996

Synopsis

constr [options] structure space

Description

constr computes the closure under union of a family of sets. constr uses the al-
gorithm developed by Cornelia Dowling (1993). Its main usage is the construction of
knowledge spaces (see spacefile, sect. 16) from their bases (see basisfile, sect. 14).

6

Usage

constr [Options] structure space

structure may be in spacefile (Sect. 16) or basisfile (Sect. 14) format. In principle,
the states can be in any order. Note, however, that ordering the knowledge states in
structure by their size, i.e. by the numbers of elements contained in the state, en-
hances the efficiency of the closure procedure.

Options are:

-a|-ascii: Use ASCII format for spacefile (see spacefile, sect. 16).

-b|-binary: Use binary format for spacefile (see spacefile, sect. 16).

-c|-complement: Compute the complements of the states before storing the space

-v|-verbose: Select informative output.

See also

spacefile (Sect. 16) , basisfile (Sect. 14)

Cornelia Dowling (1993): On the Irredundant Construction of Knowledge Spaces. Jour-
nal of Mathematical Psychology , 37:49-62

6. dep-pairs dep-all dep-matrix — Print dependence
information in a surmise relation

Last changed: 27 May 1996

Synopsis

dep-pairs basisfile
dep-all basisfile
dep-matrix basisfile

7

Description

dep-pairs prints information on prerequisite relationships between items in a sur-
mise system. The surmise system is read from basisfile. The form of the output
depends on the name the program was called with.

dep-pairs prints a list of all pairs (q, p) of different items where, from mastering item
q , one can conlude the mastery of item p. Note, however, that only the numbers of the
items are printed.
dep-all prints a list specifying for all pairs (q,p) of different items whether p is a pre-
requisite of q (printing a ’1’) or not (printing a ’0’.) Here, also only the item numbers
and the dependence flag are printed.
dep-matrix prints a (Q,Q) matrix with dependence information. A ’1’ in row q and
column p indicates that p is a prerequisite for q. Otherwise, a ’0’ is printed. For q=p , a
’-’ is used. If the set of items has less then 40 elements, then the columns of the matrix
are seperated by a space, otherwise they are not seperated at all.

See also

basisfile (Sect. 14)

7. distance di invalidity — Computing the distance between
two knowledge spaces

Last changed: 04 June 1996

Synopsis

distance [options] datafile spacefile
di [options] datafile spacefile
invalidity [options] datafile spacefile

Description

distance computes the distance between two knowledge spaces or between a set
of answer patterns and a knowledge space. The distance is defined as the average
of the distances between the single answer patterns and the knowledge space. This
latter distance is defined as the minimal size of the symmetrical set difference between

8

answer pattern and knowledge state for all knowledge states within the knowledge
space.

Depending on the selected options, all, some, or none of the distance values are printed.
If all distances are printed an additional list of nearest knowledge states for those an-
swer patterns which are not contained in the knowledge space can be requested. The
possibility to get a table of only those patterns whose distance exceeds a specified warn-
ing level offers a first step towards finding out extreme answer patterns in the valida-
tion process.

Optionally, distance also computes measures for the invalidities of items. These mea-
sures for invalidities have been developed by Katja Baumunk, Cornelia Dowling, and
Cord Hockemeyer.

Usage

distance datafile spacefile [options]
invalidity datafile spacefile [options]
di datafile spacefile [options]

Options:

-a|-ascii: Assume following files to be in ASCII format.

-b|-binary: Assume following files to be in binary format.

-d|-dist-only: Do not compute invalidity measures.

-i|-item: Compute the invalidity of items.

-l|-list: Print for each pattern a list of the nearest states (implies -table)

-nN|-number=N: Print at most N nearest states for each answer pattern (implies -
list and -table). Default for N is 10.

-p|-prereq: Compute the invalidity of prerequisite relationships (implies -item).
Not yet implemented!

-q|-quiet: Do not produce informative output.

-t|-table: Print a table with distances for each answer pattern.

-wW|-warning=W: Print a table with all answer patterns with a distance of at least
W.

-debug: Produce debug output.

9

Defaults:

distance: -binary -dist-only -quiet (general default)

di: -ascii -dist-only -table -list

invalidity: -binary -item -prereq

Both files have to be knowledge space files (see spacefile, sect. 16) or answer pattern files
(see patternfile, sect. 15) in the selected format.

History

The idea for this program was taken from the program di.exe written by Theo Held.
It was completely rewritten by Cord Hockemeyer using internal data representations
needing less memory.

The invalidity measures are still under development. Therefore, they are not yet docu-
mented in detail.

See also

spacefile (Sect. 16) , sigma-distance (Sect. 11)

8. heights — Compute the heights of items in a knowledge
space

Last changed: 11 April 1996

Synopsis

heights basisfile

Description

heights computes the heights of items in a knowledge space represented by its basis.
The height of an item is defined as the minimal size of the knowledge states containing
these items.

10

See also

basisfile (Sect. 14)

9. mk-empty-space — Create an almost empty knowledge
space

Last changed: 11 April 1996

Synopsis

mk-empty-space [-a|-ascii|-b|-binary] itemno spacefile

Description

mk-empty-space creates an almost empty knowledge space, i.e. a knowledge space
which contains only two knowledge states: the empty set and the complete item set.

Usage

mk-empty-space [options] itemno spacefile

Options are:

-a|-ascii: Use ASCII format for spacefile (see spacefile, sect. 16).

-b|-binary: Use binary format for spacefile (see spacefile, sect. 16).

Only one of these options may be used.

See also

spacefile (Sect. 16)

11

10. select — Select randomly a set of knowledge states from a
knowledge space

Last changed: 11 April 1996

Synopsis

select no_of_states spacefile selectionfile [seed]

Description

select selects randomly no_of_statesknowledge states from the knowledge space
stored in spacefile and stores these states in selectionfile. Both files are in bi-
nary spacefile (see spacefile, sect. 16) format. The optional parameter seed gives an
initialization value for the srand(3) function. Otherwise the result of the time(2) func-
tion is used.

ToDo

This program should be extended in order to enable any combinations of ASCII and bi-
nary files for the complete knowledge space file and the file of selected states. spacefiles
(see spacefile, sect. 16).

See also

spacefile (Sect. 16) , srand (3) , time (2)

11. sigma-distance — Computing the distance between two
knowledge spaces

Last changed: 10 April 1996

Synopsis

sigma-distance basisfile1 basisfile2 [-v|-verbose]

12

Description

sigma-distance computes various measures for the distance between two knowl-
edge spaces based on a per item comparison of their surmise systems. The exact def-
inition of these distance measures is printed if select-distance is called with the
verbose option.

Usage

sigma-distance datafile spacefile [options]
Options:

-v|-verbose: Select informative output.

Both files have to be basisfiles (see basisfile, sect. 14).

History

sigma-distance was implemented by Cord Hockemeyer based on ideas developed
in a discussion with Katja Baumunk and Cornelia Dowling (all Technical University of
Braunschweig, Germany).

See also

basisfile (Sect. 14) , distance (Sect. 7)

13

Part III.

General Tools

12. count — Print a sequence of numbers

Last changed: 11 April 1996

Synopsis

count number

Description

count prints the sequence of numbers from one to number to stdout. This program is
used in a number of shell scripts.

13. permute — Print a permuted sequence of numbers

Last changed: 11 April 1996

Synopsis

permute number

Description

permute prints a permutation of the sequence of numbers from one to number to
stdout. This program is used in a number of shell scripts.

14

Part IV.

File Formats

14. basisfile — Format of basisfiles

Last changed: 04 June 1996

Description

A basisfile is an ASCII file describing the basis of a knowledge space. It has the
following format:

The first line contains the number of items in the knowledge domain.

The second line contains the number of basis elements.

The following lines contain the basis elements building a matrix where the rows de-
scribe the items and the columns describe the basis elements. In each cell of this matrix
there is a ’0’ if the basis element does not contain the item, a ’1’ if it is a clause for the
item and a ’2’ otherwise.

See also

patternfile (Sect. 15) , spacefile (Sect. 16)

15. patternfile — Format of answer pattern files

Last changed: 04 June 1996

Description

Answer pattern files have the same format as knowledge space files. There are two
different possibilities to store a patternfile — as an ASCII file or as a binary file.
Both types describe knowledge spaces in a very similar manner:

15

ASCII file format

The first line contains the number of items in the knowledge domain. The second line
contains the number of answer patterns.

The following lines contain the knowledge states building a matrix where the columns
describe the items and the rows describe the answer patterns. In each cell of this matrix
there is a ’1’ if the answer pattern does contain the item, and a ’0’ otherwise.

Binary file format

The file contains a sequence of long integer numbers. The first two numbers give
the number of items and the number of knowledge states. The following long inte-
gers build bitsets, one per answer pattern. A bitset consists of as many long inte-
gers as are needed to represent the item set. This number of long integers needed
can be computed as

(ItemNo + BitsPerLong - 1) / BitsPerLong

where BitsPerLong is the machine specific number of bits used to store a long in-
teger number.

Warning

Using a binary patternfile on different hardware platforms may produce unex-
pected results since there may be different byte orders and therefore different bit orders.

See also

basisfile (Sect. 14) , spacefile (Sect. 16)

16. spacefile — Format of spacefiles

Last changed: 04 June 1996

Description

There are two different possibilities to store a spacefile — as an ASCII file or as a
binary file. Both types describe knowledge spaces in a very similar manner:

16

ASCII file format

The first line contains the number of items in the knowledge domain. The second line
contains the number of knowledge states.

The following lines contain the knowledge states building a matrix where the columns
describe the items and the rows describe the knowledge states. In each cell of this
matrix there is a ’1’ if the knowledge state does contain the item, and a ’0’ otherwise.

Binary file format

The file contains a sequence of long integer numbers. The first two numbers give
the number of items and the number of knowledge states. The following long in-
tegers build bitsets, one per knowledge state. A bitset consists of as many long
integers as are needed to represent the item set. This number of long integers
needed can be computed as

(ItemNo + BitsPerLong - 1) / BitsPerLong

where BitsPerLong is the machine specific number of bits used to store a long in-
teger number.

Warning

Using a binary spacefile on different hardware platforms may produce unexpected
results since there may be different byte orders and therefore different bit orders.

See also

basisfile (Sect. 14) , patternfile (Sect. 15)

17

