
R Packages for Knowledge Space Theory

Cord Hockemeyer1
Institute of Psychology, University of Graz, Austria

Second Edition; June 6, 2024

1Email: cord.hockemeyer@uni-graz.at

mailto:cord.hockemeyer@uni-graz.at


Abstract

R is a statistical software and programming language. It provides a vast
selection of statistical and graphical techniques, and it is highly extensible.

Knowledge space theory is a psychological model for structuring do-
mains of knowledge through prerequisite relationships. Originally devel-
oped having the adaptive and parsimonious assessment of knowledge in
mind, its application has been moving more and more towards computer–
based personalised learning.

Over the last 15 years, several R packages for knowledge space theory
have been developed by various authors. This report attempts to give an
overview on these packages.
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1 Introduction
R (R Core Team, 2022) is an open–source environment for statistical com-
puting and graphics. One of the sources of its success is the possibility
to augment its functionality by additional packages. Currently (Oct 2023),
alone the Comprehensive R Archive Network (CRAN) contains almost
20,000 such packages — not counting other repositories like GitHub1 with
over 30,000 packages.

Knowledge space theory (KST) was founded by Doignon and Falmagne
(1985, 1999, see also Falmagne et al., 2013) as a behavioural model having
an efficient adaptive assessment in mind. The core idea is to structure a
domain of knowledge based on prerequisite relationships. These prerequi-
site relationships help to reduce the number of possible knowledge states
drastically.

Generally it should be noted that knowledge structures can grow very
large. Then R might be not the optimal environment for computations —
as an interpreter language it might sometimes lack the necessary speed.

In Section 2, a short introduction to KST is given. Section 3 presents
the R packages kst, kstMatrix, and kstIO which provide some general
functionality. More specific functionalities are provided by the packages

1https://github.com/topics/r
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pks and DAKS described in Section 4. Both sections, however, do not aim to
replace any documentation of the packages; instead they shall give an idea
of what is available. In the final Section 5, some conclusions are drawn and
an outlook on possible future developments is given.

A typographic note: within this document, package and function
names are written in typewriter font to make identification easier.

2 Theoretical background
This section comprises the core ideas of knowledge space theory (KST
Doignon and Falmagne, 1985, 1999).

A domain of knowledge is characterised by a set 𝑄 of items. The
knowledge state of a learner is the subset 𝐾 ⊆ 𝑄 of items this learner masters.
The family of all knowledge states possible within a population is called
knowledge structure 𝒦 ⊆ 2𝐾 . Knowledge structures contain at least the
empty state ∅ and the full knowledge state 𝑄.

The set of possible knowledge states may be restricted by prerequisite
or precedence relationships. These are formalised by the surmise relation,
mathematically a quasi–order. For two items 𝑎, 𝑏 ∈ 𝑄, we write 𝑎 ⪯ 𝑏

if, from a learner’s mastery of 𝑏, we can surmise his/her mastery of 𝑎.
A knowledge structure following the restrictions of a surmise relation is
called a quasi-ordinal knowledge space, it is a knowledge structure closed
under union and intersection, i. e. for any two knowledge states 𝐾, 𝐾′ ∈ 𝒦 ,
their union 𝐾 ∪ 𝐾′ and their intersection 𝐾 ∩ 𝐾′ are also knowledge states
in 𝒦 .

Surmise relations have one weakness: they do not allow to model items
with different solution paths involving different sets of prerequisites. This
is covered by attribution functions and surmise systems. An attribution
function is a function 𝜎 : 𝑄 → 22

𝑄\∅. The 𝐶 ∈ 𝜎(𝑞) are called clauses of 𝑞.
The different clauses for an item are alternative sets of prerequisites.

A special type of attribution functions are surmise systems. A surmise
system is an attribution function for which the following conditions hold:

[R] For all 𝑞 ∈ 𝑄 and 𝐶 ∈ 𝜎(𝑞), 𝑞 ∈ 𝐶 (extended reflexivity).

[T] For all 𝑞 ∈ 𝑄 and 𝑞′ ∈ 𝐶 ∈ 𝜎(𝑞), there exists a 𝐶′ ∈ 𝜎(𝑞′) such that
𝐶′ ⊆ 𝐶 (extended transitivity).

[I] For all 𝑞 ∈ 𝑄 and 𝐶, 𝐶′ ∈ 𝜎(𝑞), if 𝐶 ⊆ 𝐶′ then 𝐶 = 𝐶′ (incomparabil-
ity).
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Surmise mappings correspond to knowledge spaces, i. e. knowledge struc-
tures closed under union. The clauses 𝐶 ∈ 𝜎(𝑞), 𝑞 ∈ 𝑄 are also called atoms
of 𝑞; they are the minimal knowledge states containing 𝑞.

Surmise relations can be seen as special cases of surmise systems. For
a surmise relation ⪯, a surmise system 𝜎⪯ can be uniquely defined by
𝜎⪯(𝑞) = {𝑞′ ∈ 𝑄 | 𝑞′ ⪯ 𝑞}. Vice versa, for a surmise mapping with
|𝜎(𝑞)| = 1 for all 𝑞 ∈ 𝑄, we can derive a surmise relation ⪯𝜎 by 𝑞 ⪯𝜎 𝑞

′ if
𝑞 ∈ 𝐶 ∈ 𝜎(𝑞′).

There is a one–to–one correspondence between surmise relations and
quasi–ordinal knowledge spaces and between surmise systems and knowl-
edge spaces over a given set 𝑄 of items.

For a knowledge space 𝒦 , there exists a minimal collection of knowl-
edge states from which the space can be rebuilt by closure under union.
This collection is called Basis (or base) of 𝒦 , it is denoted as ℬ. The basis
of a knowledge space can easily be determined through the corresponding
surmise system: ℬ =

⋃
𝑞∈𝑄 𝜎(𝑞).

3 General functionalities for KST
The packages described in this section mainly offer general functionali-
ties like conversion between the different representations for knowledge
structures.

3.1 The R package kst: Knowledge space theory
The kst package (Stahl et al., 2022; Stahl, 2008, originally developed by
Stahl and Meyer, and now maintained by Hockemeyer) provides functions
for working with knowledge structures. These functions are technically
realised very close to the theory, i. e. they use an R implementation of sets
and relations (Meyer and Hornik, 2022b, 2009, 2022a) for their internal
representation of the knowledge structures.
kst makes strong use of object oriented classes thus making sure that

functions are called with the right type of data. The following classes are
defined:

kbase Basis

kfamset Family of sets

kstructure Knowledge structure
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kspace Knowledge space

Furthermore, the classes set and relation from the respective R packages
are used. Please note that usually objects of classes kbase and kstructure
are also objects of kfamset, and kspace objects also have kstructure (and
kfamset).

Most functions names of kst start with a "k" thus avoiding name con-
flicts with other functions/packages. The package offers a multitude of
functions which are summarised in groups subsequently.

Converting between R representations The functionsas.binaryMatrix()
and as.famset() convert knowledge structures between set and ma-
trix representation.

Structural representations kbase() computes the basis of a knowledge
space. kstructure() creates a knowledge structure from a famset
of a relation. kspace() computes the knowledge space for a famset,
i. e. its closure under union. Finally, the method as.relation()
(for classes kbase, kfamset, kstructure, and kspace) determines the
surmise relation for a collection of states.

Properties of knowledge structures katoms() determines the atoms, i. e.
the minimal states of a knowledge structure, kdomain() returns the
domain of a structure, knotions() gives its notions.
The functions kfringe() and kneighbourhood() determine fringe
and neighbourhood of a knowledge state, i. e. the collection of states
with a set difference of "1" and the set of items building the difference
between a state and its neighbours.
kstructure_is_wellgraded() returns whether a knowledge struc-
ture is well–graded, functionkstructure_is_kspace() determines whether
a structure is a space, i. e. closed under union.

Working with response patterns kassess() does a deterministic knowl-
edge assessment for a given response pattern. kvalidate() com-
putes several validation measures for a structure and a set of response
patterns (as matrix).

Learning paths lpath() determines the learning paths in a knowledge
structure, lpath_is_gradation() tells you whether a certain learn-
ing path is a gradation.

Further functions closure() computes the closure under union or in-
tersection of a knowledge structure, the reduction() method (for
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classes kspace, kstructure, and kfamset) is its opposite. ktrace()
determines the trace of a knowledge structure, i. e. the restriction to a
subset of items.
Furthermore, the plot() method has been implemented for the
classes kfamset, kbase, and kstructure. It plots a Hasse diagram of
the respective family of sets.

3.2 The R package kstMatrix: Basic functions in knowl-
edge space theory using matrix representation

The kstMatrix package (Hockemeyer and Wong, 2023) has a high overlap
in functionality to the kst package. However, to achieve better computa-
tional performance, it uses a matrix representation which is more native to
R than sets and relations.

To avoid name collisions with other packages, all functions offered by
kstMatrix have a name starting with km.

The functions of kstMatrix can be summarised in the following groups:

Structure representations The kmbasis() function determines the basis
of a knowledge structure/space. kmunionclosure() is its opposite,
i. e. it determines the smallest knowledge space containing a given
collection of knowledge states. kmsurmiserelation() computes the
surmise relation corresponding to the smallest quasi–ordinal knowl-
edge space containing a given collection of knowledge states.

Properties of knowledge structures kmfringe() computes the fringe of a
knowledge state, i. e. the items distinguishing the state from its neigh-
bours. It uses the kmneighbourhood() function which computes the
collection of neighbours for a given state, i. e. all other states with a
distance of 1.
kmiswellgraded() returns a Boolean value indicating whether a
knowledge space is well–graded.
kmnotions() identifies notions in a knowledge structure, i. e. equiva-
lent items.

Graphics The kmhasse() function draws a coloured Hasse diagram of
a knowledge structure. A respective colour vector can be defined
through the kmcolor() function.
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Simulation and validation kmsimulate() simulates a set of response pat-
terns based on a knowledge structure and simulation parameters
according to the BLIM (Basic Local Independence Model).
kmvalidate() returns several validation measures indicating how
well a given data set (response patterns) fits to a given knowledge
structure. It uses thekmdist(), kmsymmsetdiff(), andkmsetdistance()
functions for this purpose.

Data kstMatrix offers several data sets, cad, readwrite, fractions, and
xpl. The first three data sets are from the former research group
around Cornelia Dowling at Braunschweig, Germany, the latter one
is a small example structure. All these structures can be activated
with the data(<dataset-name>) command.

3.3 The R packagekstIO: Knowledge space theory input/Output
The kstIO package (Hockemeyer, 2023b) offers functions to read and write
knowledge structure files to be used with the kst and kstMatrix packages,
i. e. it works with sets and matrix representations likewise.
kstIO supports three different groups of file formats, matrix, KST, and

SRBT.
The matrix format is simply a binary ASCII matrix where a "1" in row

𝑖 and column 𝑗 means that item 𝑗 is an element of state/response pattern 𝑖
("0" otherwise).

There is no space between the rows, and there should be no trailing
whitespaces at the start or end of the lines. The last line of the matrix must
carry an EndOfLine — in most text editors (except, e. g., vi) this means an
empty line at the end of the file.

The KST format (Hockemeyer and Dowling, 1996; Hockemeyer, 2001)
extends the matrix format by two preceding header lines containing the
number of items and the number of states/response patterns.

The SRBT format (Pötzi and Wesiak, 2001) extends the KST format by
yet another preceding header line specifying format and content metadata.
This additional header line has the format

#SRBT v2.0 <struct> ASCII <comments>

where <struct> specifies the type of data stored in the file and <comment>
is an arbitrary comment. The following file types are supported by the
respective kstIO functions:

• basis
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• data

• relation

• space

• structure

Basis files are only available in the KST and SRBT formats. Their matrices
may also contain "2"s: A "1" means the the state is minimal for the item,
and a "2" means that the state contains the item but is not minimal for it.

(Surmise) relation files are available only in the matrix and SRBT for-
mats. They are in a certain sense transposed in comparison to the other
files: A "1" in row 𝑖 and column 𝑗 means that knowing 𝑖 can be surmised
from knowing 𝑗 ("0"§ otherwise). Thus, effectively column 𝑗 describes the
minimal state for item 𝑗.

4 Specific functionalities for KST
These packages aim at more specific topics within knowledge space theory.

4.1 The R package pks: Probabilistic knowledge structures
The pks (Heller and Wickelmaier, 2013; Wickelmaier et al., 2022) package
provides several functionalities and data sets.

BLIM The BLIM (Basic Local Independence Model) is the generally used
probabilistic model in knowledge space theory. It assumes that prob-
abilities for lucky guesses and careless errors are item properties, i. e.
independent of the subject’s knowledge state.
The blim() function fits a BLIM for a knowledge structure and a
vector of response pattern frequencies. It can then be printed or
plotted with the print() and plot()methods.
Thejacobian() computes the Jacobian matrix for a BLIM. Theresiduals()
method computes deviance and Pearson residuals for blim objects,
and the simulate() method simulates response patterns according
to the given BLIM.

Building knowledge structures delineate() computes the knowledge struc-
ture delineated by a skill function. The ita() function performs an
item tree analysis (ITA) on a set of response patterns.
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Figure 1: CDSS Workflow

Gradedness The functionsis.forward.graded()andis.backward.graded()
check the forward– and backward–gradedness, respectively, of a
knowledge structure.

Conversion The as.pattern() and as.binmat() functions offer several
conversion functionalities.

Data sets pks offers several data sets, chess, probability, density97,
matter97, DoignonFalmagne7, and endm. The first four data sets are
empirical ones, the latter two are fictitious ones.

4.2 The R package CDSS: Course–dependent skill structures
CDSS (Hockemeyer, 2023a) implements functions deriving skill structures
from an assignment of taught and required skills to learning objects in an
existing course. There is a rahter straight workflow shown in Fig. 1.

Assuming there exists a pair of tables specifying the skills taught in and
required by, respectively, the learning objects, the process to obtain a basis
for the skill space consists of the following function calls:
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1. read_skill_assignment_XXX() reads a skill assignment from tables
in XXX format (maybe .csv, .ods, or .xlsx) and checks if it fulfils the
CDSS requirements.
This function makes use of some other functions provided by CDSS.

2. cdss_sa2sma() creates a skill multi–assignment from the skill as-
signment read before.

3. cdss_sma2csma() closes the skill multi–assignment under comple-
tion.

4. cdss_csma2sf derives a surmise function from the complete skill
multi–assignment.

5. cdss_sf2basis simplifies the surmise function to a basis.
The resulting basis of the skill space can then be further processed, e. g.
with the functions from the kstIO and kstMatrix packages.

4.3 The R packageDAKS: Data analysis and knowledge spaces
DAKS (Ünlü and Sargin, 2010; Sargin and Ünlü, 2016) implements functions
for analysing and simulating data based on item tree analysis (ITA). Al-
though all functions are public, some of them are not necessarily meant to
be called by the user but by other, higher level functions. Subsequently,
the DAKS functions are summarised:
IITA Inductive Item Tree Analysis: Functions corr_ita(), mini_iita(),

functionorig_iita(), pop_iita(), and iita(). ind_gen() generates a
set of competing quasi orders.

Simulation simu() does BLIM simulation.

Helper functions hasse draws a Hasse diagram for a surmise relation.
pattern() counts the frequency of patterns in a data set.

Conversion imp2state() determines the quasi–ordinal knowledge space
for a given surmise relation, state2imp() does the opposite.

print()method print() methods for objects of classes iita, popiita,
summpopiita, ztest, and pat.

summary()method Methods for the classes iita and popiita.

Data set data(pisa) provides a partial PISA dataset with responses of
340 German students on a mathematical literacy test with 5 items.
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5 Conclusions
The R packages for KST offer already a multitude of functionalities but
more will likely come. The author is, e. g. currently developing a package
with functions for building course dependent skill structures.

There exists, however, one major problem with using R in KST: real
structures can easily grow very large, and R is not always the fastest pro-
gramming environment. One solution my be to re–implement certain
functions in C/C++ and include these into the R packages. This holds
especially for the functions computing a knowledge space from a basis or,
more generally, closing a collection of sets under union or intersection.
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